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ABSTRACT

A fully factorized two-dimensional Navier-Stokes flow solver has been
developed and applied to the problem of predicting subsonic airfoil flutter in the
light stall regime. The inviscid fluxes are evaluated with a central difference
ADI scheme and fourth and second order numerical dissipation is used to obtain
oscillation-free solutions. The performance of algebraic and one-equation
turbulence models in predicting separated flow is explored for computing high
Reynolds number steady flow and unsteady flows over an oscillating NACA 0012
airfoil. Comparisons of the computed results with available experimental data
indicate that even though the lift response is fairly well predicted, the
computation of the pitching moment hysteresis loops is very sensitive to
turbulence modeling. Results computed with several current models are in good
agreement whenever the steady stall angle is exceeded only slightly. However,
they fail to capture the vortex shedding process leading to the onset of stall

flutter.
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I. INTRODUCTION

A. BACKGROUND

The development of numerical solution methods for two-dimensional
Navier-Stokes equations during the past few years provides new tools for the
investigation and prediction of airfoil flows. Of great interest is the study of flow
separation on airfoils in unsteady motion which is usually referred to as the
dynamic stall. phenomenon. McCroskey et al [Ref. 1] pertormed a series of
careful experiments which serve as valuable benchmark data. More recently,
Lorber and Carta [Ref. 2] contributed important additional experimental
dynamic stall information for a Sikorsky airfoil. They also investigated incipient
torsional stall flutter {Ref. 3] and found that small-amplitude airfoil oscillations
near static stall may be unstable.

For a pitching airfoil the instantaneous work done on the fluid by the airfoil
due to its motion is the product of the pitching moment about the axis of rotation
and the differential change in angle of attack. This product usually is a positive -
quantity. However, if the net work per cycle of oscillation were to become
negative then the fluid would be doing work on the airfoil. Once the airfoil
begins to extract energy from the freestream, the amplitude of the oscillation
will grow and finally diverge. This condition is known as stall flutter. Normally,
flutter of an airfoil is due to a combination of torsion and bending. However, in
this case flutter is caused by a single degree of freedom oscillatory motion.
During a cycle of oscillation the lift coefficient and the pitching moment

coefficient plotted versus angle of attack produce a hysteresis loop. It is the




pitching moment hysteresis loop that provides an indication of incipient stall
flutter. As shown by Carta and Niebanck [Ref. 4], clockwise pitching moment
loops represent negative aerodynamic damping and therefore cause oscillations
of a free airfoil to grow in amplitude, while counterclockwise loops cause such
oscillations to decay. Hence torsional flutter will occur as soon as the area of
the clockwise loop exceeds that of the counterclockwise loop. The
aerodynamics of small-amplitude airfoil torsional oscillations near stall need to
be investigated experimentally and computationally in order to examine the stall

flutter mechanism.

B. PURPOSE

The first objective of this investigation is to test an unsteady, compressible
Navier-Stokes code (Ns2.f) using an Alternating-Direction-Implicit (ADI)
scheme based on the the Beam-Warming [Ref. 5] approximate factorization
method to determine its ability to obtain realistic airfoil flow solutions for a
variety of flow regimes is examined. The accuracy of the numerical solution is
investigated by comparing the computed solutions with available experimental
data. Test cases include steady-state flow solutions at various flow speeds and
angles of attack, as well as, unsteady flow solutions over rapidly pitching and
harmonically oscillating airfoils. In addition, the accuracy of the Navier-Stokes
solutions are further explored by comparing each case with an unsteady,
inviscid, incompressible, panel code (U2diif.f), and with a steady,
incompressible, viscous/inviscid interaction code (Incompbl.f). The final and
principal objective of this study is to determine the influence of mildly separated
flow during part of a harmonic oscillation cycle on blade stability. Results are

presented for NACA 0012 airfoils showing the influence of various parameters.




Flow field details are also included in order to provide a better understanding of

certain flow features that may lead to stall flutter.




II. GOVERNING EQUATIONS

The continuity equation, the momentum equation, and the energy equation
must be solved simultaneously in order to obtain a flow solution of a
compressible viscous fluid about a body. A complete derivation of these
equation can be found in various texts, eg., Anderson [Ref. 6]. However, main

steps of the derivations are presented in the following sections.

A. CONTINUITY EQUATION

The continuity equation is the result of applying the physical principle of the
conservation of mass to a finite control volume fixed in space. Simply stated
the net flow out of a control volume through its bounding surface must be equal
to the time rate of change of the mass inside the control volume. For any

arbitrary control volume, the continuity equation can be expressed as

%—?—+V(p*)=0

(1)
which for a two-dimension Cartesian Coordinate system becomes
9, lpu)  dpw)

B. MOMENTUM EQUATIONS
The equation for the conservation of momentum is obtained by applying
Newton’s second law, which state that the net force acting on a fluid particle is

equal to the time rate of change of linear momentum of the fluid particle. In




Cartesian coordinates the momentum equations can be expressed as follows

d(pn) dlpui+p) dlpuw) ot  or,
ot ox oz ox oz (3)

and in the y-direction.

d(pw) J(puw) 9(PW2+P)_8T T,

2Z

+ + =
ot ox oz ox oz (4)
Stress terms are as follows
42—-—
sz = —+ —)
x oz (5)

C. ENERGY EQUATION
The conservation law form of the energy equation is derived by applying

the first law of thermodynamics (dE=dQ+dW) to a fluid particle. This leads to

k& J
Ty 3x[ E+p u]+—[ E+p w]
2 (4t + WE o~ (i, 4w, —4,)
ox oL (6)
where the total energy per unit volume and the heat flux are given by
= +1/2v)p, 4, =-k aT[ox, o

Here k is the thermal conductivity.




D. CONSERVATION FORM OF GOVERNING EQUATIONS

The starting point for the numerical algorithm which is presented in the next
section is the strong conservation law form of the two-dimensional Navier-
Stokes equations. The non-dimensionalized vector form of the governing

equations in conservation law form for a Cartesian coordinate system is:

dt el ox oz )
where,
fp 1 fpu ] fow 1] o o1
| pu | | puZ+p | lpwu | |z | Iz |
qzlpulw _ pu PL G = , I, Fv'—'l xxl, GV—I le
pw puw pw’ +p 7., Ta
te J [(e+p)uJ [(e+p)WJ LﬂJ LgaJ )
with,
_4 (01
Txx—3.ukux 2wz)
T, = p(u, ~ w,)
=2 —-l-u)
u—3“\ z 2 x
— H 2
tj,—ur‘,l+w1u+Pr(y_1)ax
H 2
4= sz+ Tzz+ z
g u w PI'(Y"I)a (10)

Here the pressure is related to the conservation variables of q by the equation

p=(y—Dle-05p(u+v*) (11)




where y = 1.4 is the ratio of specific heats, and a is the local speed of sound
given by, a2 =yp/p.

The density and the velocities are non-dimensionalized with the freestream
density po and the free stream speed of sound ae., respectively. The total
energy is normalized by aoozpoo. The time (t) scales as t* =t as / ¢, where (¢)
is a characteristic length, such as the chord length. The Euler equations are
obtained from Equation (8) by dropping the viscous terms. The strong form is

chosen because it enables shock capturing.




III. SOLUTION METHODS

A. POTENTIAL FLOW METHOD (U2DIIF.F)

For inviscid incompressible flow the conservation equations reduce to the
Laplace equation which can be solved in a number of ways. We present here a
brief outline of the widely used panel method for both steady and unsteady
airfoil flow.

1. Panel Method for Steady Airfoil Flows

The frame of reference for the formulation of the steady flow problem
is a fixed (x,y) coordinate system located at the leading edge of the airfoil. The
freestream velocity is represented by +Ve and the x-axis passes from the
leading edge through the trailing edge of the airfoil.

In order to formulate a method for computing the flow around an
airfoil, the airfoil surface is divided into (n) straight line segments or panels. The
end points of the panels are called nodes, and since there are (n) panels there
are then (n+1) nodes. Complex airfoil geometries can therefore be modeled
with a greater number of nodes and panels. The trailing edge panel is the first
panel, and the next panel continues on the lower surface in a clockwise manner
until the nth panel is reached at the trailing edge of the upper surface.

Now that the frame of reference has been specified, two additional
vectors must be defined, the unit normal vector nj, which is always
perpendicular to the (ith ) panel and directed outward from the airfoil surface
and the unit tangential vector tj, which is parallel to the (ith) panel and is

directed from the (n) node to the (n+1) node.




Two types of singularities are sufficient to model lifting airfoil flows.
U2diif.f places uniform source distributions gj and a uniform vorticity distribution
Y on each of the j-panels. Both singularities satisfy Laplace’s equation, a linear
homogeneous second order partial differential equation. Since the solutions to
linear PDE’s can be superimposed on each other, a simple flow can be added to
another simple flow and so on, until a very complicated flow field is created.

The flow field around an airfoil, represented by the velocity potential,
can be constructed from the potential of the freestream flow added to the

velocity potential of source and vorticity distributions, hence

P=0.+0,+0,

where,

¢, =V,.+(x cosa+y sina)

(13)
I«>m rds
(14)
o =) L2 6as
(15)
summation of the three potentials yields
: q(s) Y(s)
P=V_.(x cosa+y sina)+| =—h rds—| <— OGds

Equation (16) can now be evaluated at any point in the flow field by evaluating

the integrals along the airfoil contour (s), where the flow field point is located at




a distance (r) at an angle (8) measured from a point on the airfoil. Introducing

n panels and then summing the contributions of each panel yields
b=V_+(x cosa+y sina)+ZL . l(SLln r le )ds

j_l nel

= 2n 2 (17)

Once the boundary conditions are defined the system of (n) equations can be
solved for (n+1) unknowns.

Next, it is useful to introduce the concept of influence coefficients. An
influence coefficient is the velocity induced at a point in the flow field (field
point) by a unit strength singularity, source or vorticy, placed anywhere within
this field. U2diif.f places these points on each panel. A detailed description of
the use of influence coefficients is found in Teng [Ref. 7].

For the steady flow problem the influence coefficients are given in
Table 1.

TABLE 1. INFLUENCE COEFFICIENTS

ANy Normal component induced at ith control point by

unit source distribution on jth panel.

AYj Tangential component induced at ith control point

by unit source distribution on jth panel.

BN Normal component induced at ith control point by

unit vorticity distribution on jth panel.

BSj Tangential component induced at ith control point

by unit vorticity distribution on jth panel.

Bij Angle of control point (i) and panel (j) measured

from x-axis.
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There are only two boundary conditions that must be satistied in order
to solve the lifting airfoil flow pioblem. The first boundary condition is the
condition that the flow remains tangent to the airfoil surface and the second
condition is that the pressures on the upper and lower trailing edge panels must
be equal. This condition is known as the Kutta condition. Pressure is related to
velocity through Bernoulli’s equation for steady potential flow, which allows the
Kutta condition to be expressed as

angem — _[ysangent
( ) lower (V )upper ( 1 8)

The flow tangency condition is expressed as

(Vveem!) = i=12,., n

1

(19)
Equation (15%), the Kutta condition, using the influence coefficient concept is

expressed as follows

—Z[A;qul—yz[B;)‘]_Vucos(a—el)=
=l j=1

Z[A;}qj]+ yZ[B;J]+ V_cos(a-6,)

=l =1 (20)
Equation (19) the flow tangency condition, becomes, using the influence

coefficient form

i[A?,Q,]’r Yi[B','j]+ V.sin(a-6)=0 i=12...,n
= =1
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These equations can then be written in the following matrix form

rau coe s Ay ]er‘l [ b, 1

| llg,) | b, |

| 1= !l :

| g U1y

\_and.l . n#l n+lJ |_ n+lJ (,,,))

and solved with the method of Gauss Elimination with Partial Pivoting.
2. Unsteady Numerical Formulation

A brief and concise description of the unsteady numerical formulation
is found in Krainer [Ref. 8). To model unsteady flow around an airfoil using the
panel method, N unknown source strengths and one unknown vorticity strength
are located along the airfoil, a wake panel of unknown vorticity strength, length
and orientation is attached to the trailing edge of the airfoil. This makes a total
of N+4 unknowns. The flow tangency requirement at each of the N panels
represents a system of N equations. Using influence coefficients and using the
subscript k to count time, the tangential flow condition of the ith element is

written as follows

i[A;‘j (qj)k]+ a iB;‘j + [(V, +{U@i+ V()j)+Q(t)(xi - )j))in‘]k

i=1

}'w (BlJHl + Z[(Cn rm)k] =O i= 1,2,...,[1 (23)

where Voo is the mean velocity, (U(t)i + V(1)j) is a time dependent translational
velocity and Q(t) is a rotational velocity. The vectors i and j are in the airfoil

fixed coordinate system.
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The Kutta condition is a single equation that determines the circulation
around the airfoil. In this case the pressures at the upper and lower surface are
equated at the midpoints of panels adjacent to the trailing edge (i.e., the first and

last panel)

(ORI =2[———8(¢52¢1)} [‘3%] sl
k k 29
The Helmholtz theorem is another single equation that provides a
relation for the strength of the vorticity distribution along the wake element.
The Helmholtz theorem states that any change in circulation around an airfoil
must be countered by a change in vorticity in the wake of equal magnitude but

of opposite sign. This theorem can be written as follows

Ay, )k =1{y-7)
(25)

where [is the length of each individual wake element and yits vorticity
strength. Therefore, the vorticity in the wake element is equal to the negative
change in circulation around the airfoil with respect to the k-1 timestep.

To acquire the two additional equations required to solve for the N+4
unknowns, assumptions about the geometry of the wake panel are made. First,
the wake panel is oriented in the direction of the local resultant velocity at its

midpoint, as viewed in the (moving) airfoil frame of reference.

tan®, = (Vi’)k
k z x )
Yk (26)
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(v¥w)k and (vXw)k are the x- and y-velocity components at the midpoint of
each wake panel. Second, the length of the wake panel is assumed
proportional to the magnitude of the local resultant velocity at its midpoint and

to the timestep.

A= J[(V:)kr +{v2), r (tk ‘tk—l) _
(27)

The .nonlinearities in the Kutta condition and in the wake panel

assumptions necessitate an iterative solution procedure.

B. VISCOUS/INVISCID INTERACTION METHOD
(INCOMPBL.F)

The theory and numerical methods presented in this section are taken from
the work of Cebeci and Bradshaw [Ref. 9] and the investigations performed by
Krainer [Ref. 8]} and Snir [Ref. 10] .As stated in the introduction the results
from the Navier-Stokes code (Ns2.f) were compared with a viscous/inviscid
interaction method code (Incompbl.f) made available by Cebeci. An
abbreviated description of this method is given in this section. For a complete
description see the original publications, References 8 and 9.

The governing principle behind the viscous/inviscid interaction method is an
approximation to the Navier-Stokes equation that allows a flowfield to be
divided into an inner viscous region and an outer inviscid region when the
Reynolds number is sufficiently large. This concept of a thin viscous layer near
the surface of a body and an outer region where these viscous effects are small
compared to the inertial effects is known as the boundary layer theory. Unlike

the Laplace equation, which is the governing equation for potential flow, the
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thin shear layer equations are nonlinear

A o du alf V)i_l

UX'f'V'a—y:UeF’f"FV'é;lvkl‘*"j @J
(28)

with the boundary conditions

yzO, : u=v=0,
y=°o, u=ue(x) (29)
The direct boundary layer method solution to the boundary layer equations
by the Keller Box Method involves four steps. First the boundary layer
equations are transformed into a system of first order differential equations.
Next the Keller box method is used to approximate the first order differential
equations by simple centered differences and two-point averages, using values
at the corners of one difference molecule only. Newton’s method is used to
linearize the resulting algebraic equation. The Keller block elimination method
is then used to solve the resulting block tridiagonal system. The procedure
described above does not provide solutions to flows that are separated or have
regions of reverse flow.
1. Interaction Method
The interactive boundary layer method provides a special coupling
between the inner viscous flow and the outer inviscid flow, which enables

reverse and separated flows to be calculated. In such areas, the external
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velocity is substantially changed by the viscous effects and can no longer be
considered as a known boundary condition for the boundary layer flow.

The general approach to the solution is the same as for the direct
method with modifications. Since the outer flow is unknown, the velocity at the

edge of the boundary layer is given by the interaction law and is written as

wra-ue] s .
where ue(x,ye) is the total velocity at the edge of the boundary layer, uel(x) is
the velocity computed by the inviscid panel method, §* is the displacement
thickness, and the integral term is known as the Hilbert integral.

The following transformations are used to transform the boundary

layer equation into a system of first order differential equations

=X - Ky u L
é - L ’ 77 RL L ’ RL - vV
1 u,(x,y)
f(x,n)= =
(x,n) Toox yixy) w o
(31)
The boundary layer equation takes the form
f=U, U=V, W=0,
B+ 3w L= x(u%—v-gxﬁ)
i (32)
with boundary conditions:
n=0, U(x,0)=0, f(x,0)=0,
N=Ne, U(x,ne)=W(x,ne) (33)
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The velocity at the edge of the boundary layer now becomes

wie) =28 2 f :—éu%[W(é,n,)n—f(é,rL)] xd_gg

[+

(34)

The finite difference box method is used to solve the equations, in the
same way it was used for the direct case, but with two additions. First in areas
of flow reversal the udu/ox is omitted to assure stable integration. And second,
the edge velocity is approximated by the relation presented in the next section.

By u.sing central differencing to approximate the differential equations,
a system of nonlinear algebraic equations is obtained for the unknown variables
(which are f, U, V, and W). To solve the system of equations, the system is
lincarized by the Newton iterative procedure, and the resulting linear system is
solved for the new unknown variables which are the increments 8f, U, &V, and
oW.

The solution procedure is repeated until the change in the increments
is negligible compared to the preceding iteration. The iterative process is
performed again at the next downstream station.

2. Interactive Model

The interactive model is used to couple the boundary layer to the
external flow. It is nceded in areas where strong interaction occurs, and both
the boundary layer and the outer flow must be solved simultaneously. The
external velocity is assumed to consist of a potential flow term and a correction

term due to viscous effects. [ue(x)=uel(x)+ues(x))
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The normal velocities at the surface of the airfoil, induced by sources
distributed on the surface, displace the streamlines from the surface in the same
way that the actual boundary layer displaces them.

Several assumptions are made in order to express the correction term
in the form of the Hilbert integral. First, the surface is approximated to bc a flat
plate, and the normal velocity is then half the local source strength o(x).
Second, the inviscid velocity does not change across the boundary layer.
Therefore, the local horizontal velocity induced by the source distribution, is the
correction term to the inviscid velocity, and can be represented by the Hilbert

integral

HES
7! x-g (35)
The integration is carried out on all the sources on the surface. The Hilbert

integral is then approximated by a finite series

1 dé < oK
n-’. é(“ 5')_—5‘21 ci(u.d’)

where cijk is a matrix of interaction coefficients which are functions of the

(36)

geometry only.

Since the computation of ueg involves values of 6* downstream of the
current x location, which are not known yet, these terms are taken from the
previous iteration using a relaxation formula.

3. Turbulence Model

The turbulence model used in the code is the Cebeci-Smith model

[Ref. 11] and Michel’s method is used to predict the transition from laminar to

turbulent flow.
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C. EULER AND NAVIER-STOKES CODE (NS2.F)
In order to facilitate the numerical implementation for arbitrary complex
flow domains, the Navier-Stokes equations are transformed to a generalized

coordinate system, (&,{), using the transformations

& =¢lx,z)

¢ =¢(x,z) (37)
The grid spacing in the curvilinear space is uniform and of unit length so that
unweighted differencing schemes can be employed for the numerical
implementation. The grid points in the Cartesian system, referred to as the
physical domain, correspond via a one to one relationship to the points of the
curvilinear transformed system, referred to as the computational domain.
Singularities of the transformation may occur on the computational boundaries.
Such singularities occur for grids with multiple connected regions. The
transformation of the governing equations from the physical domain to the
computational domain is obtained in most cases by numerically evaluating the
metrics and the Jacobian of the transformation. The derivatives with respect to
the x, y variables can be expressed in terms of the new variables by the chain

rule.

J % 2
xoWET
oz TIE ToC

(38)
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The metrics and the Jacobian of the transformation are given by

Ex=Jz, Cx =-Jz, (39)
Ez=-Ixg, Cx =T xe, (40)
1

R P——
XeZo =X 2 (41)

The Navier-Stokes equations written in generalized curvilinear coordinates
retain the strong conservation law form expressed by Equation (8). The

governing equation for generalized curvilinear coordinates is

(42)
The conservation variable vector 4 and the inviscid fluxes l:“ and C in the

transformed space are given by

R [pU 1 oW 1
A_l‘pﬂ‘ ,_l|puU+§,p L iloWu+gp |
lpwlt F=Tlowurep b OTTluwage |

[e L(e+ p)U - §p_| L(e + P)W - CtP_l (43)

where U and W are the contravariant velocity components along the & and

directions respectively, given by:

U= +6u+bw, W= +{u+lw (44)

The viscous flux terms are transformed as

~

1 - 1
v _T(;Fv+§va)’ Gv _T(CXFV+CLGV) (45)
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with the stress terms from Equation (10) expressed in terms of the transformed

variables &, € as

Tix =§#[(§xu§ +Cxu§)—%(§zw§ +C,w, )]
T = #[(ézug +§zu()+ (é‘wg +§ch )]
T, =§'#[(§zwg +Czw()—%(§xu§ +Cx“g)]
B U [, oa® ol
fd_urxx+w‘txz+})r(y_l)l-§x aé +Cx ggJ
o u [, o> _ ol
B SUT AWt BT S S S O | 46)

When the thin layer approximation [Ref. 12] to the two-dimensional

conservation law form of the governing equations is applied, they take the

following form
dt E I “Re| I | @7
where,
p ] [pU 1 [pW 1
. 1lpul l:,_llPUU*'éP | G_IIPW“’LQP |
=71 pwb ‘T:pwU+ép : “T pwW+{,p :
l.e J L(C+P)U—§PJ L(e+p)W &p| (48)
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The viscous flux term is transformed as

( 0 )

1 pmug+(u/3m, g, |
"7y umlwg+(u/3)mzc,J
4 mm, + (#/3)mz m, (49)
Here,
m =+
m2=§xu§+Czwg
19 1 [ga?l
m3=§-g;(u2+w2)/2+P o I_D%J
m, = Gu+{w .

1. Numerical Grids

In order to compute flow solutions of partial differential equations
(such as the Navier-Stokes Equations) with finite differences, a discretized
version of the physical domain must be generated. During the course of this
investigation, several different NACA 0012 airfoil C-type grids were generated
using two different grid generation methods. A grid generation code call
GRAPE that uses the Poisson differential equation was used in the early stages
of investigation. The inviscid and viscous grids shown in Figures 1 and 2 were
generated from an algebraic grid generation code. Note the finer resolution of
the viscous grid near the airfoil surface. This resolution is required to
accurately represent the boundary layer. The flow solutions presented in

Chapter IV were computed by using the grids shown in Figures 1 and 2. The
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advantage to using an algebraic grid , vice a PDE method or a conformal
mapping method, is that it is computationally efficient.

A simple description of the algebraic grid generation method is offered.
First the airfoil surface coordinates are unwrapped to form a simple curve, by
separating the lower trailing edge from the upper trailing edge. This curve is
the starting point for the generation of the computational domain. Lines are
drawn normal to the curve and grid points are then located at intervals on these
lines. Lines may be clustered near the leading or trailing edge of the airfoil; or
at some other area of interest, eg., a shock location. The resolution of the
points normal to the surface is achieved by the use of an algebraic function that
provides uniform stretching normal to the body surface. Once the grid is
created in the computation domain it is then transformed back into the physical

domain using inverse transformations.
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2. The Numerical Scheme
The integration in time is performed implicitly with a second order

accurate scheme cf the form
A" ="l o =éli(Aq")+-—-—+O Ar”
Using this trapezoidal rule differencing scheme to approximate the time

derivative of the conservative dependent variable q vector, the unknown

conservative variables at the n+1 timestep are given by

w23

The spatial derivatives of the governing equations are discretized using central

(52)
differences, and the right hand side of Equation (52) becomes

A . “\n - A \N+
Aq" ='Tt{(5¢F+5cG) +(&F +6,G) 1} (53)

The nonlinear terms F and G at the n+1 timestep are linearized as follows

-a-F—Aq"" +O(A*)=F" + A"Aq™" +0O(ar?)

ﬁnﬂ =f:n +
X (54)

where A" is the flux Jacobian matrix given in Appendix A. Substitution of the

linearized form of the flux vectors in Equation (54) yields

At ~ g n+ ') ~n
{l” +-2_-(8§Al.k +6§Bt.k )}Aql.kl = At{(SCF'-k -5§G‘-k} (55)
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The two-diruensional operator on the left hand side of Equation (355) is

approximately factorized as follows:

{lll +%55A;; }{lll%‘-a;fs;k }Aqf;‘ = a{Fr -8,G, ]
(56)
On the right hand side of Equation (56) an explicit dissipation term Dexpl, is
added for numerical stability. In order to obtain an oscillation free solution a
second order dissipation term Dimpl is added to the left hand side spatial
operators. Thus, the complete discretized form of the governing equations

becomes

{“I+ 3 ( nk ‘mpl }{lll+— 5) B‘ k+ lmpl ))?A n+l _

(57)
{-a{sfr - 8,61, - e DL} = RHS) 58)
This equation is solved by performing two sweeps as follows:
m+ﬁ(5 A +D,..) ) AqQ'ik =(RHS)"

) £ Mk impl q ik =
(59)

on+l
{[[|+ (5 B!, +(Dlmpl) )}: AQ ik 60)

During each sweep the following linear block tridiagonal system of equations is

solved

3,1, AT, +b, AT+, AT, = 6 (61)
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where Aq = Aq™n+1 and f = (Rh3)" when the & direction sweep is performed,
and Aq = Aq“+1 and f = (RHS)*" when the { direction sweep is performed.

The block matrices have the form

|k=-él;&lk-—€impAt =
2 Jm.x (62)
b,, = (1+2¢,, A1l .

At - Ji
Cix =_2'Ai.k —EimplAtJ—L ,
-1k (64)

3. Boundary Conditions
All flows were computed at subsonic free stream speeds. For
subsonic inflow and outflow boundaries the flow variables are evaluated using
zero order Riemann invariant extrapolation. At the inflow boundary there is one
incoming and three outgoing characteristics, therefore, three variables, density
(p), normal velocity (wy), and pressure (p) are specified and the fourth variable
axial velocity (uy), is extrapolated from the interior. The inflow boundary

conditions are given by

firr-1)
pxz[&'] . os =(pafpl)s al=(y_l)(RT*RE)

B 4
u, = (Rf +R3)f2
W, =W,

2
(%)

(65)
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where R*1, R- are the incoming and outgoing Riemann invariants given by
Ri=u_+2a_fly-1), R;=u,-2a,[(y-1) (66)

At the outflow boundary there is one incoming and three outgoing
characteristics and only one quantity, pressure, is specified while the others are
extrapolated from the interior. For the density and the normal velocity, simple
first-order extrapolation is used, and the axial outflow velocity is obtained from
the zero order outgoing Riemann invariant. The outflow boundary conditions

are given by

h =P
u, =Ry —2a1/(}/—- 1), a, =Jmw,/p
W, =W,
P.=P;

(67)
On the body surface the nonslip condition is applied for the velocities. The
density and pressure are obtained from the interior by extrapolation. For the C-
type grids used in this study averaging of the flow variable at the wake cut is
used.
4. Turbulence Models
a. Baldwin-Lomax Turbulence Model

The Baldwin-Lomax model [Ref. 12] is a two -layer, inner and
outer eddy viscosity model for the computation of two- and three-dimensional
flows. Patterned after the Cebeci-Smith model [Ref. 11], it incorporates a
modification that bypasses the need for finding the edge of the boundary layer.

This is achieved by introducing the vorticity in place of the boundary layer
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thickness. The turbulent effect is simulated by an inner eddy viscosity, given
by:

)inner= 2 S crossover

(14 Al y<y 68)

where ycrossover is the smallest value of y at which the values of the inner and

outer eddy viscosities are the same and the Prandtl mixing length 1 is

[ (_ Al
y
l=ky| 1 —exp| ==
l. A )_I (69)
The magnitude of the vorticity in two-dimensions lwl and y* are defined as

follows

d ox) and H, H., (70)

where A+ is a constant. The subscript w denotes values at the wall or airfoil

du oV v _ Puly _¥PULY
le=( ) y = =

surface in this case.
The outer eddy viscosity is given by the following expression
(“& )ouler= KCCFpF(y)wAKEF(y)KLEB nyOSSOVCrS y (7 1)
where x and Ccp are constants and F(y)wake=Ymax Fmax for boundary layers and
F(Y)wake=Cuwk Ymax (UDIF2/Fmax ) for wakes and separated boundary layers.

The quantities ymax and Fpax are determined from the expression

I £
Fly)=y |of Ll exp( A | -
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The exponential term of Equation (72) is set to zero for wakes. Fpax is the
maximum value of F(y) that occurs in a profile and y., is the value of y at

which it occurs. F(y)gpgp is the Klebanoff intermittency factor given by

-1

[ Coreny ) |
F(y)KLE,,:LHS. &LJJ
ymu (73)
The quantity Upr is the difference between Unpax=Uy=ymax and the minimum

total velocity in the profile

UDIF=(Ju2+v2) —(Ju2+v2)y

Y= Yo = e (74)
The second term in Upy is taken to by zero except in the case of wakes.

The constants were determined to achieve agreement with
Reference 11 and can be found in the original document. This model
completely models turbulent flow over an airfoil, it is relatively easy to code, it
does not degrade the solution convergence, and it is computationally efficient.

b. Johnson-King Turbulence Model
The Johnson-King model [Ref. 13] takes into account the

convective and diffusive effects on the Reynolds shear stress -u’w’ in the

streamwise direction. The eddy viscosity is given by

Fl ‘{V: ]1
Vo= W, |1 -exp =
[ Vo J (75)

where v, vio describe the eddy viscosity variation in the inner and outer part of

the boundary layer. The inner eddy viscosity is computed as
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v, =D’y J-TW) oA

max where D*=1- , where the constant At=15. The

outer viscosity is given by

Vio=0(x)[0.168U5*y] (76)
where v is the Klebanoff intermittency function y=[1+5.5( y/8)6]-1 and o(x) is the
solution of the ordinary differential equation which describes the development of
-u’w’lmax along the path of maximum shear stress. This model accounts for the
effects of convection and diffusion on the Reynolds stress development through

the solution of the following ODE

( |

| |
ig._ a, )(1_ g ]+ Cor L }_ Vi, \
ox - 2ti'mLm‘ geq _(l I Vlo-“l

'l 207-{3 J'

(77)
here Cgif and aj are modeling constants, up is the maximum average mean
velocity and g=[-u’w’lmax]-1/2, geq=[-u’w’'lmax,egl-1/2 where L is the

dissipation length evaluated as

L, =040y vy, /8650225

L =009 520225
m y Ym /! (78)
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The equilibrium shear stress geq in Equation (77) is determined from the

following equilibrium eddy viscosity distribution

r v Y
ool

to.q
Viieq =D2WJ(—E'W')m.eq
Vioeq =0 (x)0168U 5] (79)

An implicit Euler method is used for the numerical solution of Equation (77),

and the maximum shear stress at each iteration level is updated as follows

n+l

o) =o(x)" V":,
Yo (80)

Solutions with the Johnson-King turbulence model were obtained as follows.
First a convergent solution using the Baldwin-Lomax turbulence model for the
entire flow field was computed. Then the Johnson-King model was applied only
to the upper part of the airfoil. To initiate the solution 6(x) in Equation (76) is
set equal to unity and it is allowed to change according to Equation (80) until
the final solution is obtained.
c. Algebraic RNG-based Turbulence Model

Recently an algebraic eddy viscosity, as well as a two-equation x—
€ model based on Renormalization Group (RNG) Theory of turbulence [Ref. 14]
were proposed for the closure of the Reynolds-averaged Navier-Stokes
equations. The algebraic model, although free from uncertainties related to the
experimental determination of empirical modeling constants, still requires

specifications at an integral length-scale of turbulence which reduces the
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generalities of the model. Here the integral scale is assumed proportional to the
distance from the wall and the eddy viscosity for the RNG-based algebraic
turbulence model is obtained as in Martinelli [Ref. 15] from the following

formula

[ [ < b
v=v,l.1+Hi€—,¢(—1§+021255) -C, ”

where v=v(+v], H is the Heavyside step function and ¢ is the dissipation

(81)
function ¢=1ij ( duj/ dxj). The RNG-based turbulence model is applied only for

the suction surface separated flow region while the pressure side and the wake

regions are computed with the Baldwin-Lomax model.
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IV. RESULTS AND DISCUSSION

A. METHOD OF INVESTIGATION

As stated in the introduction this investigation is divided into three parts;
validation of the Navier-Stokes code (Ns2.f) through comparison with
experimental data and a well tested inviscid unsteady Panel method code as
well as a steady viscous/inviscid code. Finally evaluation of the effects of
reduced freqﬁency, mean angle, amplitude, Mach number, and Reynolds
number on unsteady flow behavior are examined. Also, during the course of
this study it became necessary to investigate the effects of several turbulence

models on the results computed for the harmonically oscillating cases.
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The following table lists the cases studied during the course of this

investigation:
TABLE 2. TEST CASES
Case Type of Motion Parameters

1 Steady State M=0.7, a=1.4°, Re=9x100
(Transonic)

2 Steady State M=0.799, 0:=2.26°, Re=9x 106
(Transonic)

3 Steady State M=0.3, Re=3x106

4 Steady State M=0.3, Re=4x106

5 Rapidly Pitching Airfoil M=0.3, k=0.01272, Re=2.7x106

(Ramp)

Harmonically Oscillating

(Multiple Parameters)

o(t)=A0 A1 sin(wt)

Harmonically Oscillating

(Small Amplitude)

a(t)=13"+2.5°sin(wt), k=0.2, Re=4x100

Harmonically Oscillating

(Small Amplitude)

a(t)=13°"+2.5°sin(wt), k=0.1, Re=2x100

Harmonically Oscillating

a(t)=9°+5°sin(wt), k=0.2, Re=4x100

10

Harmonically Oscillating

a(t)=1015.5°sin(wt), k=0.1, Re=4x100

11

Harmonically Oscillating

a(t)=11°+5"sin(wt), k=0.1, Re=4x100
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1. Steady-State

Flow solutions can be obtained either by rotating the grid or by rotating
the flow. Cases 1 and 2 solutions were obtained by rotating the grid.

First the procedure was used for the computation of steady flow over
the NACA 0012 airfoil. Steady-state solutions were obtained for subsonic and
transonic flow regime. Flow solutions for Case 1 and 2 (Table 2) were
computed by rotating the direction of the flow relative to the stationary grid.
However, in Cases 3 and 4 the grid was rotated to the desired angle using a
simple Fortran code called rotgr.f and the free stream flow remained parallel to
the x-axis. The program also translates the grid to a desired pivot point. In this
thesis the pivot point was always chosen to be the quarter chord point. Either
method produced the same solution. The steady-state solutions tested the
accuracy of Ns2.f and provided initial solutions for the unsteady cises. Ns2.f
was also compared to an existing steady, incompressible, viscous/inviscid
method (Incompbl.f) obtained from Dr. T. Cebeci, California State University at
Long Beach.

a. Case 1. M=0.7, a=1.4°, Re=9x106

The flow conditions for the first test case are Moo=0.7, at an angle
of attack of 1.4 degrees, and a Reynolds number of nine million. Explicit
boundary conditions were used and the Baldwin-Lomax turbulence model was
selected. The solution was obtained on a 161x64 point grid. This case was
chosen because the solution converged rapidly. Figure 3 shows good
agreement between the inviscid (Euler) pressure distribution and the measured
values of Harris [Ref. 16]. Next, a Navier-Stokes solution was obtained whose

convergence history is given in Figure 4. The solution was carried out to 2500
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iteration at a timestep of approximately 0.08. The pressure distribution
computed by Ns2.f (Figure 5) is also in good agreement with the measured
values. However, the suction peak is more accurately predicted by the inviscid
solution. For a free stream Mach number (Mo) of 0.7 a maximum Mach
number of 1.1 (Figure 6) is obtained on the upper surface near the leading edge.
The density contour plot, Figure 7, shows the smooth contours indicative of a
fully converged solution. The velocity field, Figure 8, shows the boundary layer
thickness, represented by the thick dark line. The sonic line is represented by

the line extending from 7% chord to 20% chord.
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b. Case 2. M=0.799, a=2.26°, Re=9x106

The next steady-state case investigated was at a Mach number
equal to 0.799, at an angle of attack of 2.26 degrees and a Reynolds number of
nine million. As in Case 1, an Euler solution was first obtained and compared to
measured data as well as to a viscous solution obtained with an upwind scheme
using the Johnson-King turbulence model. As seen in Figure 9, the pressure
distribution for the inviscid solution is in fair agreement with the measured data
until the shock is reached at the 50% chord point. After this point the computed
solution fails to predict the pressure jump due to the presence of a shock at
mid-chord. Note that the upwind scheme in combination with the Johnson-King
turbulence model accurately predicts the location of the shock, even though the
magnitude of the pressure gradient is off slightly. Next, a viscous solution was
computed by Ns2.f with the Baldwin-Lomax turbulence model. Fourth order
dissipation was added to produce a smooth flow solution across the weak shock
located at mid chord. The solution was continued for 6000 iterations. The
spike in the convergence history (Figure 10) was due to the addition of more
fourth order dissipation. It is seen that the shock location was not predicted.
At this angle of attack and Mach number the flow starts to separate and the
Baldwin-Lomax turbulence model fails to model this separated flow region.
Figure 11 shows the viscous pressure distribution comparison. The sonic line is
shown on the Mach contour plot of Figure 12. A maximum Mach Number of
1.45 is reached in this supersonic flow region. Note the steep Mach gradient
(Figure 12) at approximately 60% chord. Figures 13 and 14 show the pressure
contour and density contour, respectively. Again the steep density gradient

indicates the shock location at approximately 60% chord vice the measured




location at 50% chord. Finally, the velocity field and sonic line are shown in

Figure 15.
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c. Case 3. M=0.3, Re=3x106

In order to produce C) vs a and Cpy vs o curves, solutions were
computed for a=2°, a=4°, a=6°, a=8°, a=9°, a=10°, a=12°, a=13°, a=13.5",
a=14°, and a=15°. However, only results for a=4°, a=11°, and a=14", are
presented.

Figure 16 shows the convergence history of Ns2.f for a 161x64
algebraic C-type grid. The Courant-Friedrichs-Levy (CFL) condition was
approximately 2000-2500 which corresponded to a timestep between 0.005 and
0.01. A comparison of the computed pressure distributions at a=4° (Figure 17)
shows good agreement between the Navier-Stokes calculations using the
Baldwin-Lomax turbulence model and the viscous/inviscid code predictions.
The measured suction peak is somewhat higher than predicted by the codes.
Figures 18 and 19 show fair skin friction agreement. Note that the Navier-
Stokes code assumes turbulent flow over the entire airfoil, while the
viscous/inviscid interaction code uses Michel’s method to predict the
laminar/turbulent transition. As seen in Figure 18, the transition point for the
upper surface is at 109% chord. A Mach contour plot is shown in Figure 20 and
a density contour plot with the normalized stagnation pressure (0.98) contour
overlayed in Figure 21. A maximum Mach number of 0.48 was attained. The
density contours are smooth with steep gradients at ihe leading edge.

In Figures 22 through 29 similar results are presented for angles of
attack of 11 and 14 degrees. It is seen that the agreement between the two
codes and the measured pressure distributions is quite satisfactory, although the

suction peak tends to be underpredicted by both codes.
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Figures 30 and 31 show the Cjvs a and Cp vs @ curves,

respectively. Stall is seen to occur at approximately o=13.5°. The Navier-
Stokes code reproduces the experimental lift and moment values up to the
maximum lift value quite well, whereas the viscous/inviscid code shows greater

deviation for angles of attack exceeding about eight degrees.
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d. Case 4. M=0.3, Re=4x106
Figure 32 shows a comparison of the computed lift curve with the
experimental data at a Reynolds number of four million. It can be seen that the
computed maximum lift angle and hence the static stall angle is 13.5° degrees.
This agrees quite well with the experimentally measured stall angle of
McCroskey et al [Ref. 17]. The computed lift and pitching moment are in fair

agreement for small angles of attack, but start to deviate at larger angles.
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2. Rapidly Pitching Airfoil

Next, AGARD Case 6 from Landon [Ref. 18] was investigated using
Ns2.f and U2diif.f. The computed results are compared to the measured data.
The flow condition for this case corresponds to a freestream Mach number
equal to 0.3 at a non-dimensional pitch rate equal to 0.01272 and a Reynolds
number of 2.7 million. Flow solutions for a rapidly pitching airfoil were
computed by pitching the airfoil about the quarter chord at a constant rate from
zero degrees angle of attack to a final angle of attack of 15.54°. Figure 33

shows a sketch of the motion produced by a rapidly pitching airfoil.
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Figure 33. Rapidly Pitching Airfoil Motion

First a steady-state solution at zero degrees angle of attack was well
converged to 3800 iterations. Then the iteration counter was reset to zero and
the airfoil was rapidly pitched up to the final angle. The reduced frequency K is
given by k=t ¢/ 2 Ue. where a is the pitch rate. In terms of non-dimensional

quantities a(t)=2Moqok and a(t)= ag+a1(t/ T), where ag) (AQ), is the initial angle
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of attack a=0°, o] (A1), is the final angle of attack a=15.54°, and T is the time
required for the airfoil to complete the pitching motion.
a. Case 5. M=0.3, k=0.01272, Re=2.7x106

Figure 34 shows the comparison of the computed pressure
distribution for the ramp-type unsteady motion at a=4.84°, for an inviscid Euler
calculation. This Euler solution uses a 121x35 C-grid for the computation.
Similar results were produced for ensuing angles of attack. Figures 35 through
39 show pressure distributions at 0=4.84°, a=6.72°, a=10.80°, a=12.83°, and
a=15.54°. Surprisingly, the inviscid code predicted the suction peak more
accurately than the N-S code for all angles of attack. Several explanations are
offered to account for this unexpected result. First the 161x65 C-grid may not
be fine enough to predict the magnitude of the suction peak and the N-S code
may have too much numerical viscosity, thus in effect performing calculation at
a lower Reynolds number. The flow at the leading edge may in fact be laminar,
while the computed solution assumed turbulent flow everywhere. Figure 40

shows the Mach contour and Figure 41 shows the density contour at a=10.8".

75




0.3 a=4.87

3
3
S
ol
ynnad
-
O
—
,O
et
Sd
2
o
oF
@)
-l
dH-
Figure 34. Pressure Distribution (Inviscid), Ramp Motion, M=0.3,

a=4.87°, k=0.01272, Re=2.7x106

76




5/X ‘UOIILI0T ASIMPIOYD)

01 80 90 0 c0 0°0

-0

Cl

Ipipen poandwoe) —--
FTSN pondwo )y w
UOPURT] POINSTIN  ® |

“@op Ly r=eydiv

01

9xx01XL T=Y ‘TLT10'0=M "€ 0=IA ‘uonojy dwey

JURIDIJJ0)) 2INsSal]

=4.87°,

0.3, a

Pressure Distribution, Ramp Motion, M

Figure 35.

0.01272, Re=2.7x106

k=

77




5/X ‘UOILI0T Astmploy))

01 80 90 v 0 cO0 00

ol

yupgn panduio)y —-—

FTSN paindwo)y
uopue] pomstoly e - w
Bap cr9=eydpy

01

950 1XL'T=Y ‘TLTI0'0= ‘€' 0=IA :uonojy dwey

JUID1JJ300) 2INSSal]

=6.72°,

03, a

0.01272, Re=2.7x106

Figure 36. Pressure Distribution, Ramp Motion, M
k

78




9/X ‘UONIEI0 ] asimplioy))

01 80 90 v 0 cO0 00

! ]

cl

Fmpzn poindwey —--

J SN pamnduio)) N
UOPUR] PANSTI @ T
dap gl =eydyy

01

90 1XLT=9Y ‘TLT10'0= ‘€' 0=IA :UOHIOJN dwury

JUIDI]JA0)) AINSSAl]

=10.80°,

0.3, a

0.01272, Re=2.7x106

Pressure Distribution, Ramp Motion, M
k

Figure 37.

79




0/X ‘uonLd07 Isimploy)

0’1 80 90 v0 0 00

“Bop ¢g'TImeydly

Ol

Oux01XL 7= ‘TLT10'0=I ‘€ 0=IA :uonojN dwey

.
L a
w
w
c
J
v 4%
=g
-9 =
o
Fpzn pandwo) —-- w
J'TSN paimdwio) z
UOpUT] POMSTIN  ® B

=12.83°,

=0.3, o
0.01272, Re=2.7x106

Figure 38. Pressure Distribution, Ramp Motion, M
k

80




J/X ‘UONIEI07T ASIMPIOYD)

01 80 90 0

JSupen pomdutoy —--

TISN pamduio])
UOPUET} pamseYy @

Bap rggi=rydyy

0

cl

9

Ol

0 1XLC=2 "TLCTO0=M "CO=IN

:uonoy dwey

JUIIDIJJA0)) AINSSAl]

=15.54",

0.3, a

0.01272, Re=2.7x106

Pressure Distribution, Ramp Motion, M
k

Figure 39.

81




HUH ~NIMHE R

-
z
= = - =
sz r =
= - 3 -z
FTzx o=
£
- .
= 2
= - x -
= T = F
=% .3
= F Xz
M
3
e

Figure 40. Mach Contour, Ramp Motion, M=0.3, a=10.8",
k=0.01272, Re=2.7x106




T HIARAHPLON PRE SSHI

NN D

k4
= = -
= > r
X _- s -
r T x -
£
TR ]
e
= - X
e
>
zs
Z

[}

Figure 41.

LRIND

Ihixh-d

T =TI ===
T =TI =Tc== =
T2z Eg===Z==
STz T T =

Density Contour, Ramp Motion, M=0.3, a=10.8",
k=0.01272, Re=2.7x106




A detail of the flow field generated by Ns2.f at ®=12.83" is shown
in Figure 42. The flow appears to be smooth and attached (the dark line shows
the boundary layer edge). However, magnification, as shown in Figure 43,
reveals the start of a slight reverse flow region at approximately 10% chord. At
a=15.54°, Figure 44, the boundary layer is much thicker with reverse flow
profiles from approximately 10% chord to the trailing edge.

Figures 45 and 46 present the computed C] vs o and Cppy vs
curves, respectively. The Navier-Stokes code underpredicts lift and pitching
moment coefficients whereas the inviscid panel method gives significantly
better lift predictions. However, it fails to predict the pitching moment
coefficient for angles greater than 10°. A more comprehensive investigation of

the dynamics of a rapidly pitching airfoil can be found in Grohsmeyer [Ref. 19].
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3. Harmonic Airfoil Oscillation Using the Baldwin-Lomax
Turbulence Model
Next, the code was applied to sinusoidal airfoil oscillations about the
quarter chord point. These time periodic solutions were obtained for the second
cycle because the results obtained for the third cycle were indistinguishable
from ones of the second cycle. Figure 47 shows the computed angle of attack

history.
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Figure 47. Harmonically Oscillating Airfoil

Here, Ag is the mean angle of attack, and A is the amplitude. For
each oscillatory case a steady-state solution was obtained for the minimum
angle of attack during the cycle. The iteration counter was set to zero as the
sinusoidal motion was time shifted half a cycle so that the start of the motion
begins at the minimum angle of attack. This ensures a smooth transition for the

converged steady state solution to the start of the oscillatory motion. Ten
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thousand (10,000) iterations were computed per cycle, with a timestep equal to
approximately 0.05 to 0.01.
a. Case 6. a(t)=Ag9°+A|°sin(wt)

All the computations presented in this section are computed with
Ns2.f using the Baldwin-Lomax turbulence model. Figures 48 and 49 show the
effect of Mach number on the lift and moment hysteresis loops for small
amplitude oscillations about a mean angle of 12 degrees with an amplitude of
3.0 degrees, at a Reynolds number of four million and at a reduced frequency
of 0.1. Note that the hysteresis loops for Meo=0.4 oscillate wildly and third
cycle computations do not coincide with results from previous cycles. For the
Mo=0.3 computation the moment hysteresis loop indicates a stable condition.
The effect of amplitude is shown in Figures 50 and 51. Figures 52 and 53 also
show the effect of amplitude for a larger mean angle of attack, Ag=14.0°, at the
same Mach number, reduced frequency, and Reynolds number, as before. Both
solutions oscillate in a manner that is not repeatable if the motion is allowed to
continue for additional cycles. For this comparison the maximum angle of
attack attained during a cycle exceeded 16.5°. A comparison of the first and
second cycle lift and moment coefficient loops is shown in Figures 54 and 55.
Note that the second cycle lift curve starts at a slightly greater lift coefficient
than in the first cycle. Aside from this anomaly, the loops are in good
agreement but exhibit no instability.

Figure 56 shows the computed lift and moment loops for small
amplitude oscillations about a mean angle of 13 degrees with an amplitude of

2.5 degrees, at a Reynolds number of two million, for three values of reduced
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frequency. It can be seen that all the moment loops computed in this section

using the Baldwin-Lomax turbulence model indicate torsional stability.
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b. Case 7. a(t)=13°+2.5°sin(wt), k=0.2, Re=4x106

In an effort to determine if the flow field was in fact predicting a
trailing edge vortex that would shed during the oscillation cycle as seen in the
experimental results, instantaneous particle traces and the corresponding
velocity fields were plotted for the downstroke at a Mach number of 0.3, a
mean angle of attack of 13 degrees, an amplitude of 2.5 degrees, a reduced
frequency of 0.1 and a Reynolds number of four million. Figures 57 through 61
show the downstroke ‘portion of the cycle beginning at a=15.3° and ending at
a=14.5°. A recirculatory region is seen in Figure 57 which grows slightly, as

seen in Figure 58. This region then appears to diminish in size and intensity.
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c. Case 8. a(t)=13°+2.5°sin(wt), k=0.1, Re=2x106

The plots generated for Case 7 did show a recirculatory region,
but a full understanding of its development and structure could not be gained
from only a portion of the oscillatory cycle. Therefore in Figures 62 through 80
a complete cycle is shown for the same flow condition as in Case 7 with only
the reduced frequency being increased from 0.1 to 0.2 and Reynolds Number
decreased from four million to two million. A recirculatory region is seen to
form at &=14.9° on the upstroke, which continues to grow and intensify. This
recirculatory region reaches its largest value at a=15.3° on the downstroke and
then diminishes and finally the flow becomes completely reattached. It is
important to note that even for this relatively fast oscillation the recirculatory

region did not shed into the wake.
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4. Effect of Turbulence Modeling
a. Case 9. o(t)=9°15°sin(wt), k=0.2, Re=4x106

Figures 81 and 82 show a comparison of the lift and moment
hysteresis loops using the Baldwin-Lomax turbulence model for an oscillation of
5 degrees amplitude about a mean angle of attack of 9.0 degrees with
McCroskey’s experimental data for 8 Mach number of 0.3, a Reynolds number
of four million, and a reduced frequency k=0.2. It is seen that there is a
substantial difference between the computed and the experimental lift
hysteresis loops. This difference becomes even more pronounced when the
computed and experimental moment hysteresis loops are compared with each
other. In an effort to understand the failure of Ns2.f to predict the experimental
pitching moment hysteresis loop, the pressure distributions for several upstroke
and downstroke angles of attack were compared to measured data from
Reference 1. Figures 83 through 87 show pressure distributions for a=11.9° on
the upstroke portion of the cycle; and a=13.7°, a=13.0°, 2=10.5°, and a=8.9° on
the down stroke cycle. U2diif.f overpredicts the suction peak at a=11.9° on the
upstroke and Ns2.f underpredicts the peak. Even though the values are off, the
general shape of the distribution is well predicted. However, on the downstroke
at a=13.7°, a significant difference between the computed and the measured
distributions is observed. The measured pressure distribution shows a lower
suction near the leading edge but higher suction near the trailing edge. Neither
of these changes are predicted by Ns2.f. As the oscillation continues on the
downstroke the measured distribution tends to flatten out creating a “plateau”.
Just after a=8.9" on the downstroke, the flow begins to reattach and the positive

pressure difference at the trailing edge becomes smaller. The failure of Ns2.f to
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predict the experimental loop results from the inability of Ns2.f to accurately
compute the pressure distributions. Since the pitching moment is an integrated
quantity, the size of the area under the pressure distribution aft of the quarter
chord must be greater than the area forward of the quarter chord to compute a
negative or downward pitching moment. Ns2.f clearly does not predict the

experimental pressure distributions during the downstroke.
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b. Case 10. a(t)=10°+5.5°sin(wt), k=0.1, Re=4x106

The measured loop cousists of two subloops, a clockwise
“unstable” subloop and a counterclockwise *“stable” subloop. It is seen that the
Navier-Stokes calculations in combination with the Baldwin-Lomax turbulence
model fails to predict the destabilizing clockwise pitching moment loop. For this
reason the sensitivity of the computed loops to different turbulence models was
studied next. Figures 88 and 89 show the computed lift and pitching moment
loops for oscillation about a slightly higher mean angle of 10 degrees at an
amplitude of 5.5 degrees. The Mach and Reynolds numbers are again 0.3 and
four million, and k was decreased to 0.1 to minimize the effects of reduced
frequency. It can be seen that the Baldwin-Lomax, Johnson-King. and the
RNG turbulence models produce significantly different hysteresis loops. The
RNG model produces relatively good agreement with the measured lift

hysteresis loop but fails again to predict the destabilizing moment subloop.
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c. Case 11. a(t)=11°+5°sin(wt), k=0.1, Re=4x106

A solution was also computed for oscillations about a mean angle
of 11 degrees at an amplitude of 5 degrees, the other parameters left
unchanged. Figures 90 and 91 show the computed lift and moment hysteresis
loops. As before, the calculations fail to predict the expected destabilizing
moment subloop. The reason for this failure can be better appreciated by
visualizing the separated flow structures computed with these turbulence
models. Figures 92 and 93 show the computed flowfield with particle traces
and the velocity field. Figure 92 corresponds to the instant when the airfoil
oscillates through an incidence of 15 degrees during the downstroke. Different
turbulence models produce substantially different recirculatory flow patterns on
the upper surface near the trailing edge. The Baldwin-Lomax model produced
the smallest recirculatory region while the RNG model produced the largest. In
addition, Figure 93 (a=15") shows the relative magnitudes of the velocity
vectors. Note, near the surface at the trailing edge, the magnitude of the
velocity vectors in the reverse flow region calculated by the Baldwin-Lomax
model are much smaller than the region calculated by the Johnson-King model
or RNG model. As the cycle continues, Figures 94 and 95 (x=14°) show the
recirculation region to shnnk slightly and loose intensity for the Baldwin-Lomax
model, while the regions as calculated by the Johnson-King and RNG continue
to expand and intensify. As noted in Case 8 the recirculatory flow region
grows and then vanishes again during the course of the oscillation. Even
though the structure at the trailing edge resembles a vortex it does not shed
from the trailing edge. The occurrence of the destabilizing moment loop

appears to be closely associated with the vortex shedding from the trailing

140




edge, an event which occurs soon after the static angle is substantially
exceeded during part of the cycle. Although the static stall angle is significantly
exceeded in the present calculations the numerical procedure along with the
turbulence modeling used in the calculations appears to be unable to produce

the anticipated shedding process.
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD '

M., =0.3, a(t) = 11° + 5° sin (ot), k = 0.1, Re = 4 x 106
a =15 DOWNSTROKE

(c) RNG

Figure 93. Velocity Field, Oscillatory Motion, M=0.3, a=15°
(Downstroke), a(t)=11°+5°sin(ot), k=0.10, Re=4x106
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD

M=03,a(t) = 11°+5° sin (wt), k = 0.1, R = 4 x 106
o = 14° DOWNSTROKE

Figure 94. Instantaneous Particle Trace, Oscillatory Motion, M=0.3,
a=14° (Downstroke), a(t)=11°+5°sin(®t), k=0.10, Re=4x106
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EFFECT OF TURBULENCE MODELING ON THE COMPUTED
TRAILING EDGE FLOWFIELD

M=03,a(t)=11°+5°sin (o), k = 0.1, Re = 4 x 106

a = 14 DOWNSTROKE

(c) RNG
Figure 95. Velocity Field, Oscillatory Motion, M=0.3, a=14"
(Downstroke), a(t)=11°t5°sin(wt), k=0.10, Re=4x106
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V. CONCLUSIONS AND RECOMMENDATIONS

In the preceding investigation a computationally efficient, fully factorized,
two-dimensional Navier-Stokes flow solver was utilized to predict steady and
unsteady flow solutions about a NACA 0012 airfoil. Comparisons between a
steady viscous/inviscid interaction method code using the Cebeci-Smith
turbulence model and the Navier-Stokes code using the Baldwin-Lomax
turbulence model show close agreement up to just prior to the static stall angle
of attack. After this point, the viscous/inviscid interaction method code fails to
accurately model the flow separation.

When applied to the unsteady problem of airfoil stall flutter in compressible
flow, the Navier-Stokes code shows that the modeling of the recirculatory flow
region with current turbulence models fails to capture the essential physics
which governs the onset of stall flutter. Comparisons of the computed results
with available experimental data indicates that even though the lift response is
fairly well predicted, the computation of the pitching moment hysteresis loops is
very sensitive to turbulence modeling. Results computed with several current
models are in good agreement whenever the steady stall angle is exceeded only
slightly. However, they fail to capture a vortex shedding process that may
contribute to the onset of stall flutter.

Therefore, further detailed studies of improved numerical schemes and
turbulence models as well as viscous/inviscid interaction approaches are
required to improve the prediction of the unsteady flow separation and vortex
shedding phenomenon. Further computational work with the full Navier-Stokes

equations instead of applying the thin-layer approximation is recommended. In
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addition, local grid refinement studies that focus on the the leading and trailing
edge upper surface may lead to the accurate prediction of the extremely

complex vortex development and shedding process.
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APPENDIX A - FLUX JACOBIAN MATRIX

The Jacobian matrices A=JE/ ] and B=dF/ & are given by Aor B =
kol + k1A + k2B, where A = dE/dq and B = 0F/dq are the usual Jacobian

matrices of the Cartesian flux vectors. The Aor B matrix is

Ir k, k, k, 0 ]I
I —uku+k,v)  —(y-2)ku —(y—1)k,v -1k |
: + k,9? +k,+ ku+ k,v +k,u Y ’ :

- JE
A:-aE:: -v(k,u +k,v) kv —(y =2)k, v+ 1k :
| + k¢ ~y-Dk,u ko +k,u+k,v 2 |
I
|k +k,v) * lye/p)-9%k,— |rle/p)-o*lk,— ylku+k,v) |
U-r(c/p)+2¢2] (y Dlku+k,vu (y-1)(ku+k,v)v +k, _]

where $2 = 0.5(y - 1)(u2 + v2), ko=, k1=Ex, ko=t for A, and ko=Cy, k1=Cx,
k2=, for B.

152




APPENDIX B - PITCHING MOMENT DERIVATION

Figure 96 shows the nomenclature for the integration of the pressure and
shear stress distributions over a two dimensional body surface as generated by
the Navier-Stokes code Ns2.f. For unsteady motion the airfoil is rotated with
respect to a fixed inertial frame of reference (x,z: Laboratory frame of
Reference). Note, for unsteady motion, as the airfoil rotates through an angle of
attack, all grid (i=1...Imax, k=1...Kmax) are rotated about the desired pivot point
with respect to the fixed x,z coordinate system. As the solution is advanced in

time the flow quantities for this new grid location are updated for each point.

T.E. upper, i=131

—

v 1
Az=z(i+1) - z(i) B

Ax=x(i+1) - x(i)

T.E. lower, i=31

7 - coordihate

X - coordinate

Figure 96. Pitching Moment Derivation

153




PITCHING MOMENT DERIVATION GENERATED BY MATHCAD

1. Read tabulated data generated from Ns2.f. Data computed at a=0° and a Re=4x10**6.

Data := READPRN (up) Data := READPRN (low) i:=1 ..50
u 1l
<0> <0>
x := Data x := Data
u u 1 1
<l> <1l>
z := Data z := Data
u u 1l 1
<2> <2>
Ccp := Data Ccp := Data
u u 1 1
<3> <3>
T := Data T := Data
u u 1 1l

2. Compute Ax and Az for upper and lower surface.

Ax = X - X Ax.1 = x.1 - x.1
u u u
i i i-1 i i (i-1)
Az =z -z dz.1 = z.1 - z.1
u u u
i i i-1 i i (i-1)

3. Compute segment length As for upper and lower surface.

2 2 2
ds = Ax + |Az ds.1 : Ax.1 + [4z.1
u u u
i i i i i i

4. Compute angle, 6, relative to perpendicular for upper and lower surface.

(A 2
u 1

n i T i
e := 0*]=| + atan 8 := 0-|—1| + atan

180 180
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5. Computed the x and z moment arms for the upper and lower surface.

XX zZZ L=

XX

6. Computepitching moment coefficient about quarter chord by applying equation 1.11 from [Ref.
6, p. 17].

[ [-cp -cos[e + 7 -sin(8 xx ]
u u u u u
i i i i i “ds
" - - u
+ [ecp sinf[8 + 1 cos[8 zz ] i
u u u u u
Cm 1= E L L i 9 i i i i] i J
25
i [[ecp -cos|e 1 + « -sin(e 17 - xx 1
1 1 1l 1 1l
+ L i s i] i i i] i “As
1l
+ |[-cp *sin|é + 7 “cos |8 zz i
1 1 1l 1 1
L L i i i i i
Cm = 0.005
25

7. The computed pitching moment coefficient from Ns2d.f (Computed on a Cray Super-Computer)
was Cm=0.0006, as compared to the calculations made on a Macintosh SE/30 where Cm=0.005.
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Upper Surface Data:

X y4 -Cp Tau
-2.5e-1 -1.6e-3 -1.0319e+0 3e-3
-2.497e-1 3e-3 -9.84le-1 -7.4e-3
-2.479%e-1 7.0e-3 -€.7%8e-1 -1.5e-2
-2.447e-1 1.2e-2 -4.091e-1 -1.64e-2
-2.404e-1 1.65e-2 -1.766e-1 -1.54e-2
-2.346e-1 2.09%e-2 9.93e-2 -1.1%e~2
-2.273e-1 2.4%e-2 2.286e-1 -8.4e-3
~2.187e-1 2.88e-2 2.769%e-1 -6.3e-3
-2.088e-1 3.26e-2 3.316e-1 -4.,9%e-3
=1.975e-1 3.6le-2 3.715e-1 -3.8e-3
~1.85e-1 3.94e-2 3.951e-1 -3e-3
-1.713e-1 4,26e-2 4.105e-1 -2.4e-3
-1.564e-1 4.55e-2 4.19%e-1 -1.9%e-3
-1.403e-1 4.8le-2 4.245e-1 -1.5e-3
=1.23e-1 5.05e-2 4,248e-1 -1.2e-3
-1.047e-1 5.26e-2 4.,221e-1 -le-3
-8.54e-2 5.44e-2 4.168e-1 -Tle-4
-6.5le-2 5.6e-2 4.09%4e-1 -6e-4
-4,38e-2 5.73e-2 3.9%6e-1 -4e-4
-2.17e-2 5.82e-2 3.904e-1 -3e-4
1.3e-3 5.8%e-2 3.778e-1 -2e-4
2.5e-2 5.93e-2 3.628e-1 ~-le-4
4.95e-2 5.94e-2 3.494e-1 Oe+0
7.45e-2 5.92e-2 3.343e-1 le-4
1.002e-1 5.88e-2 3.184e-1 le-4
1.264e-1 5.81e-2 3.031le-1 2e-14
1.53e~1 5.72e-2 2.875e-1 2e—-4
1.8e-1 5.6e-2 2.71e-1 2e-4
2.073e-1 5.46e-2 2.544e-1 3e-4
2.348e-1 5.3e-2 2.378e-1 3e-4
2.626e-1 5.13e-2 2.211e-1 3e-4
2.904e-1 4.93e-2 2.045e-1 3e-4
3.182e-1 4.72e-2 1.884e-1 3e-4
3.461e-1 4.5e-2 1.716e~-1 4e-4
3.738e-1 4.27e-2 1.55%e-1 4e-4
4.014e-1 4.02e-2 1.421e-1 4e-4
4.,287e-1 3.77e-2 1.252e-1 4e-4
4.557e-1 3.5%e-2 1.067e-1 4e-4
4.823e-1 3.23e-2 9.05e~-2 4e-4
5.085e-1 2.96e-2 7.46e-2 4e-4
5.342e-1 2.68e-2 5.68e~-2 4e-4
5.593e-1 2.4e-2 3.86e-2 de-4
.5.838e-1 2.12e-2 2.06e-2 4e-4
6.076e-1 1.84e~2 1.3e-3 3e-4
6.306e-1 1.56e-2 -2.05e-2 3e-4
6.528e-1 1.29%e-2 -4.42e-2 3e-4
6.742e-1 1.01e-2 -7.02e-2 3e-4
6.946e-1 7.4e-3 -9, 2e-2 2e-4
7.141e-1 4.7e-3 -1.441le-1 le~4
7.325e-1 2.2e~3 -1.088e-1 Oe+0
7.49%e-1 Oe+0 -2.34e-1 Oe+0




Lower Surface Data:

X z -Cp Tau
-2.5e-1 -1.6e-3 -1.0319%e+0 3e-3
-2.486e~-1 -6.2e-3 -7.832e-1 4,%e-3
-2.458e-1 -1.06e-2 -4.815e-1 2.3e-3
-2.41%e-1 -1.51e-2 -2.554e-1 -2e-4
-2.366e-1 -1.96e-2 2.4e-2 -2.2e-3
-2.298e-1 -2.37e-2 2.063e-1 ~2.8e-3
-2.215e-1 -2.76e-2 2.624e-1 -2.7e-3
-2.12e-1 ~3.14e-2 3.142e-1 -2.5e-3
-2.012e-1 -3.5e-2 3.61%9e-1 -2.2e-3
-1.891e-1 ~3.84e-2 3.892e-1 -1.9e-3
-1.758e-1 ~4.16e-2 4.067e-1 -1.7e-3
-1.613e-1 -4.45e-2 4,178e-1 -1.4e-3
-1.456e-1 -4.73e-2 4.23%-1 -1.2e-3
-1.288e-1 -4,.97e-2 4,256e-1 -le-3
~1.109e-1 -5.19e-2 4.237e~-1 -8e-4
-9.19%e-2 -5.39%e-2 4,19%1le-1 -Te-4
-7.2e-2 -5.55e-2 4.126e-1 -5e-4
-5.11e-2 ~5.69%9e-2 4.035e-1 -4e-~4
-2.94e-2 -5.7%e-2 3.932e-1 -3e-4
-6.8e-3 -5.87e-2 3.84e-1 -2e-4
l1.66e-2 -5.92e-2 3.68le-1 -le-4
4.06e-2 -5.94e-2 3.527e-1 Oe+0
6.53e-2 -5.93e-2 3.419%e-1 le-4
9.06e-2 ~-5.9%e~2 3.24%e-1 le-4
1.164e-1 -5.84e-2 3.084e-1 2e-4
1.427e-1 -5.76e-2 2.941e-1 2e-4
1.694e-1 ~-5.65e-2 2.777e-1 3e-4
1.963e-1 ~-5.52e-2 2.612e-1 3e-4
2.236e-1 -5.37e-2 2.448e~-1 3e-4
2.51le-1 ~5.2e-2 2.283e~1 4e-4
2.785e-1 -5.02e-2 2.118e-1 4e-4
3.06le-1 -4,82e-2 1.957e-1 4e-4
3.336e~-1 -4.6e-2 1.794e-1 4e-4
3.6le-1 -4,38e-2 1.631e-1 4e-4
3.883e-1 -4.14e-2 1.49%e-1 4e-4
4.154e-1 -3.8%e-2 1.342e-1 4e-4
4.421e-1 -3.64e-2 1.16e-1 4e-4
4.685e-1 -3.37e-2 9.88e-2 Se-4
4.945e-1 -3.11le-2 8.37e-2 Se-4
5.199%e-~-1 ~-2.84e-2 6.73e-2 Se-4
5.448e-~-1 -2.57e-2 4.95%e-2 S5e-4
5.69%e-1 -2.29%e-2 3.18e~2 4e-4
5.926e-1 -2.02e-2 1.43e-2 4e-4
6.155e~1 ~1.75e-2 -5.3e~3 4e-4
6.375e-1 -1.48e-2 -2.6%e-2 4e-4
6.587e-1 -1.21e-2 -5.06e-2 4e-4
6.789%-1 -9.5e-3 -7.47e-2 4e-4
6.982e-1 -6.9e-3 -9.64e-2 3e-4
7.165e-1 -4.4e-3 ~-1.491e-1 2e-4
7.338e-1 -2.1le-3 -1.101le-1 le-4
7.49%e-1 Qe+0 ~2.34e-1 Oe+0




APPENDIX C - USING THE PROGRAMS

A. DIRECTIONS FOR THE EXECUTION OF NS2.F

1. Steady State Case

In order to generate a Cp, CJ, or Cm plot from Ns2.f there are many steps, using
six different programs that must be taken: (1.) grape (grid generation program), (2.) rotgr
(grid rotation program), (3.) Ns2.f (Navier-Stokes code), (4.)vi (editor), (5.) plot3d
(flow visualization program), and (6.)xyplot (a simple x-y plot program).

A.) Ns2.fis a fortran code and will take hours to run even on the Stardent mini-
super computer. To run this code, an executable file (ns2), an input file ns2.in (actual
name of input file is users choice) and a grid file FOR011.DAT (Stardent) or fort.11 (on
other computers) must be in the directory.

B.) To obtain a grid, a grid generation program such as grape must first be
used. Grape output places the leading edge of the grid at the reference axis at 0.0° AOA.
Now, the grid must be rotated to the desired AOA by using the program rotgr. The input
file (output from grape) for rotgr must be FOR001.DAT and the output is FOR002.DAT.
The output from rotgr (FOR002.DAT) must be renamed to FOR011.DAT for use in ns2.

C.) Nextedit the input file to reflect the desired flow conditions. Any editor will
do, however vi is perhaps the most common editor and it is found on most unix based
machines. Enter Mach No. and AOA, check smoothing factors, set time step, Courant No.
and initial no. of iterations (small value- for first run). Check restart false for first run and
make sure No. point of your grid match input values.

D.) The code is executed as follows: ns2 <ns2.in> ns2.out

The first ten iterations should take 1-10 minutes, depending on the type of
computer used. Several output files will be generated:

TABLE 3. NS2.F OUPUT

[OUTPUT COMMENTS

ns2.out: convergence data

FOROO4.DAT: Q) data

FOR007.DAT. residuals

FOROO8.DAT: C), Cd, Cm data

FOROO9.DAT: Cp data (to be used with xyplot)
FORO31.DAT: Flow data (1o be used with plot3d)

E.) Re-run the code for a greater number of iterations to achieve a
converged solution. When the change in the max residual (FOR007.DAT) has dropped

10-2, the solution has converged. Ensure restart is set to true. The CFL can also be
adjusted to obtain a converged solution more rapidly.
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a. Sample Input to Ns2.f
MACH, ALFAO, ALFAl, ALFARE, REDFRE, REYNOLDS

0.300, 0.00, 0.0, 0.00, 0.00, 2.70
ED2X, ED2Y, ED4X, ED4Y, ED
0.00, 0.00, 0.030, 0.030, 2.0
DT, COUR, NITER, NEWTIT
0.0020, 2100, 50, 2
RSTRT, O0SCIL, RAMP, NPER, TSHIFT
true, false, false, 10000, -0.5

TIMEAC, IMPLBC, EXPLBC, CIRCOR
1, false, true, false
VISC, BLTM, JKTM, RNGTM
true, true, false, false
ITEL, ITEU
31, 131
IAl, IA2, IA3, IA4, 1IA5, IA6, IA7, IA8, IAS, IAlO
1250,1350,1450,1550,1570,1590,1610,1630,1630, 1805
false
UNSTST (If true Time = 0.,Set TRUE only when unsteady motion starts from steady
steady state, TRUE for steady-state ok, but for unsteady restarts must be FALSE
for proper recording of unsteady motion)

Mach : Free stream Mach number

Alfal : Angle of attack, also mean angle of attack for unsteaay

Alfal : Amplitude of Oscillatory motion

Alfare : Reference angle

Redfre : Reduced frequency k = omega * ¢ / 2U

Reynolds : Reynolds number Re = cU/n

ED2x : X-direction 2nd order explicit smcothing ( e2x = 0.00 subsonic,
0.25 < e2x < 0.5C transcnic)

EDZ2z : Z-direction 2nd order explicit smoothing ( e2z = 0.00 subsonic,
0.10 < e2z < 0.20 transcnic)

ED4x : X-direction 4nd order explicit smocthing ( edx = 0.03 subsonic,

edx = 0.05 transonic)
ED4z : Z-direction 4nd order explicit smoothing ( ed4z = 0.03 subsonic,
edz = (.05 transonic)

ED : Scaling of Implicit smoothing

ISPEC : Spectral radious parameter

Dt : Time step

Cour : Courant number Cu = dt * L max

Niter : Number of Iteration in this run

Newtit : Newton subiteration within each timestep

RSTRT : Restart

0SCIL : Oscillatory motion A(t) = A0 + Al * sin ( k * M * t )

RAMP : Ramp motion

NPER : Number of time steps in one period of cscillation, dt=T. Nper

TSHIFT : Time shift in radians to start oscilation for any a(t)

TIMEAC : Time accurate Tacc=1 and for Jacobian Scaled Dt, Tacc={

LMy LB : Implicit wall BC Treatment

EXPLBC : Explicit wall BC Treatment




VISC : Only laminar viscosity

TURBL : Baldwin-Lomax eddy viscosity

JKTM : Johnson-King eddy viscosity

RNGTM : RNG eddy viscosity

ITEL, ITEU : Lower and Upper trailing edge I locations

IAl etc. : Write out (IAn/100) angles of attack in units
61 - 70

Read grid from unit fort.11l and the flow from unit fort.31
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b. Sample Output from Ns2.f
Grid dimensions : 161x64

Mach = 0.30000

Ao = 0.00000 Al = 0.00000 k = 0.01272

Re = 0.2700E+07 Dt = 0.00200 Cu=2100.00000

Dimpl = 2.00000

D2x = 0.00000 D2z = 0.00000

D4x = 0.03000 D4z = 0.03000

Restart = T

Oscil = F

Ramp = F

Itel = 31 Iteu = 131 1Ile = 81

Timeac = T

BC impl = F

BC expl = T

Cour = 2100.

L max = 232096.4825513

Dt = 0.00904796

It drmax dumax dvmax demax ir Xr
3000 0.573103E-07 0.371716E-07 0.563395E-07 0.129865E-06 140 63

Ni= 1 0.903247E-08 0.711341E-08 0.803250E-08 0.219128E-07
Alfa(t) = 0.000 C1 = 0.00719%6 Ccd = 0.003260 Cm = -0.000692
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2. Unsteady Case

The execution of an unsteady case is essentially the same as for the
steady-state case.

A. First, a well converged steady-state solution must be obtained.
This solution then becomes the starting point for the unsteady solution.

B. The restart is left set to true, however, to reset the time counter
to time=0, the UNSTST variable must be set to true for several iterations and
then back to false for normal time counting.

C. As the unsteady motion begins to march in time Flow data and
Grid position data may be stored at user determined angles of attack. To store
flow data at =12.5°, a=13.5°, a=14.5", etc... enter the data shown in Table 4.
into the input file.

TABLE 4. ANGLE OF ATTACK INPUT

IA1 J1A2  [1A3  |IA4 ]IAS 1A6 |IA7 |JIA8 [|IA9 ]IA1O

1250 | 1350 1450 [1550 J1570 [1590 |1610 [1630 |1630 [1805

D. The Flow data and the Grid data at each a will be stored in data
files FOR021.DAT through FOR030.DAT. The Grid and Flow data can be
separated using a simple fortran code that reads the data and then writes the
data to two separate files. Splgf.f inputs the desired file ID and outputs a Grid
file and Flow file.
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a. Sample Input to Ns2.f
MACH, ALFAQ0, ALFAl, ALFARE, REDFRE, REYNOLDS
0.300, 0.00, 15.54, 0.00, 0.01272, 2.70
ED2X, ED2Y, ED4X, ED4Y, ED
0.00, 0.00, 0.030, 0.030, 2.0
DT, COUR, NITER, NEWTIT
0.0020, 2100, 50, 1
RSTRT, O0SCIL, RAMP, NPER, TSHIFT
true, false, true, 3000, -0.5
TIMEAC, IMPLBC, EXPLBC, CIRCOR
1, false, true, false
VISC, BLTM, JKTM, RNGTM
true, true, false, false
ITEL, ITEU
31, 131
IAal, IAa2, IA3, IA4, IAS, IAe6, IA7, IAa8, IAS, IAlOQ

1250,1350,1450,1550,1570,1590,1610,1630,1630, 1805
false

UNSTST (If true Time = 0.,Set TRUE only when unsteady motion starts from steady

T o-

steady state, TRUE for steady-state ok, but for unsteady restarts must be FALSE

for proper recording ¢f unsteady moticn)

Mach Free stream Mach number

Alfa0 Angle of attack, also mean angle of attack for unsteady

Alfal Amplitude of Oscillatocry motion

Alfare Reference angle

Redfre Reduced frequency k = omege * ¢ / 2U

Reynolds Reynolds number Re = cU/n

ED2x X-direction 2nd order explicit smoothing ( e2x = (.00 subsonic,
0.25% < e2x < 0.50 transonic)

ED2z Z-direction 2nd order explicit smoothing ( e2z = 0.00 subsonic,
0.10 < e2z < 0.20 transocnic)

ED4x X-direction 4nd order explicit smoothing ( ed4x = 0.C3 subsonic,

e4x = 0.0°5 transonic)

ED4z Z2-direction 4nd order explicit smoothing ( edz = C.02 subscnic,

ED Scaling of Implicit smoothing

ISPEC Spectral radious parameter

Dt Time step

Cour Courant number Cu = dt * L max

Niter Nurber of Iteration in this run

Newtit Newton subiteration within each timestep

RSTRT Restart

OSCIL Cscillatery motion A(t) = A0 + Al * sin ( kK * M * U )

RAMP Rarp motion

NPER Numker of time steps in one period of oscillaticorn, di=T/Lper

TSHIFT Time shift in radians to start oscilation for any (L)

TIMEAC Time accurate Tacc=1 and for Jacobian Scaled 1z, Tazo=l

IMPLBC Implicit wall BC Treatment

EXPLBC Explicit wail BC Treatment




VISC : Only laminar viscosity

TURBL : Baldwin-Lomax eddy viscosity

JKTM : Johnson-King eddy viscosity

RNGTM : RNG eddy viscosity

ITEL, ITEU : Lower and Upper trailing edge I locations

IAl etc. : Write out (IAn/100) angles of attack in units
61 - 70

Read grid from unit fort.ll and the flow from unit fort.31
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b. Sample Output from Ns2.f

Grid dimensions

Mach
Ao
Re

Dimpl
D2x
D4x

Restart
Oscil
Ramp

Itel =

Timeac
BC impl
BC expl

Cour =
L max =
Dt =

it = 2000
Alfa(t) =

165

: 161x64
0.30000
0.0000¢C Al = 1€.00000 k = 0.01272
0.2700E+07 Dt = 0.01829 Cu= 15.00000
2.00000
0.00000 D2z = {.00000
0.03000 D4z = 0.03000
= T
= F
= T
31 Iteu = 131 Ile = 81
= T
= F
= T
4289.735274387
234539.,927¢c22¢%
0.01829000
drmax duma:x dvma:
0.84929CE-0€ C.1C7934E-05 (€.19C543E-C5 0.
0.113997E-06 0.302620E-06 (.448250E-0¢ 0.
Time = 35.665350C omega = 0.037¢32 phase =
15.596 C1 = 1.4z25268 Cd = $.137214 Cm =
0.778403E-06 (0.107038E-05 (€.191827E-0% 0.
0.113176E-06 (0.297453E-06 0.45047€E-06 Q.
Time = 36.58300C omega = (.007¢32 phase =
12.2%¢ C1 = 1.453350 Cd 0.14€98%2 Cm =

demax

17420CE-C5

C.3

O

19737~

3

[S S

[NalN A

63




B. DIRECTIONS FOR THE EXECUTION OF U2DIIF.F

1. Unsteady Case

A. A complete description of the input and output parameters can be

found in Teng.

TABLE 5. U2DIIF.F INPUTS/OUTPUTS

FILE COMMENTS
FOROO1.DAT Input
U2diif.out Output

B.) For a unix based machine the code is executed as follows:

U2diif > U2diif.out

Note: The original Fortran code can be modified to store desired output in
separate data files by inserting a WRITE (9,*) statement inside the required do-
loop. (Example: Cp vs x/c data could be stored in a data file FOR009.DAT).

This requires some knowledge of Fortran programming.
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a. Sample Input to U2diif.f
4

A A AT A A AT A R A AN AT A A A A AT A AT A A A AT AT AR AR AR A AT A A A A A A AT ARATAAARAAARAR N
AIRFOIL TYPE : NACA 0012 AIRFOQOIL
NLOWER = S , NUPPER = 50

ARAA A A A AR AR AN AT A AR A A XA A AT A A AR AT AT A A AR AT A AAAAAAARAAIARAXRRXRR XX

0, 50, 50

12

0.00, 15.54, 10.67, 0.00, 0.25, 0.00, 0.00

0.00, 0.00, 0.00

11.00, 0.010, 0.0001, 0.00

108, 294, 487, 584, 802, 891, 1006, 1007, 1283, 1554

ITITLE

INPUT TITLE (ITITLE = NO. LINE)

IFLAG NLOWER NUPPER

AIRFOIL TYPE

ALPI DALP TCON FREQ PIVOT UGUST VGUST

DELEX DELHY PHASE

TF DTS TOL TADK

ial ia2 ia3 ia4d4 ia5 ia6 ia7 ia8 ia%9 i1all
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b. Sample Output to U2diif.f

DATA FROM fort.l: (IRIS) OR FOROOLl.DAT: (STAkRwLiN.)

A A A A A A AT A AR A A A A A A AR AR A AR AR AR A A AR AR K IR R A AR AR R AR KRKAAAKNKA AKX AKX AR KK

AIRFOIL TYPE : NACA OCl2 AIRFOIL
NLOWER = 50 , NUPPER = 50

KA A A KA A AR AR A KA A ARk A Rk ko dkr Ak kA Ak kkkkdkhk kkokkkx kX Kkkhkkkxkkkdkxxkk

IFLAG (0:NACA, 1:INPUT) = 0

NO. PANELS UPPER SURFACE = 50

NO. PANELS LOWER SURFACE = 50
INITIAL ANGLE OF ATTACK = 0.0000
FINAL ANGLE OF ATTACK = 15.5400
RISE TIME = 10.6700
REDUCED FREQ. FOR OSCIL = 0.0000
PIVOT POINT = 0.2500
STREAMWISE GUST VELOCITY = 0.0000
PERPENDICULAR GUST VELOCITY = 0.0000
X AMPLITUDE OF TRANS OSCILL. = 0.0000
Y AMPLITUDE OF TRANS OSCILL. = 0.00C0
PHASE CF TRANS OSCILL. 0.0C00
FINAL TIME = 11.0000
INITIAL TIME STEP FOR S.S. = 0.0100
TOLERANCE FOR CONVERGENCE 0.0001
FACTOR BY WHICH DTS ADJUSTED = 0.0000
COORDINATES OF AIRFOIL NODES

X/C Y/C

1.0000603 0.000000

0.999013 -0.000141

0.996057 -0.0005¢2

0.984292 0.002z22

0.991144 0.001258

0.99€6057 0.00G5€2

0.999013 0.000141

1.00000C 0.0CC3CC
AIRFOIL PERIMETER LENGTH = 2.039290
STEADY FLOW SOLUTICN AT ALPHA = 0.30CG00

J X (J) QI GAMMA CP(J) Vi(J)
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1 0.999507 -0.112073 0.000000 0.433845 -0.752433
2 0.997535 -0.120842 0.000000 0.341896 -0.811236
3 0.993600 -0.126091 0.000000 0.279513 -0.848815
4 0.987718 -0.129448 0.000000 0.232223 -0.876229
5 0.979910 -0.131624 0.000000 0.193468 ~0.898071
6 0.970208 -0.132948 0.000000 0.160181 -0.916416
7 0.958651 -0.133600 0.000000 0.130705 ~0.932360
8 0.945283 -0.133699 0.000000 0.104047 -0.946548
9 0.930159 -0.133328 0.000000 0.079564 -~0.959383
10 0.913336 -0.132558 0.000000 0.056812 -0.971179
90 0.894883 -0.131445 0.000000 0.035461 0.982110
91 0.913336 -0.132561 0.000000 0.056813 0.971178
92 0.930159 -0.133333 0.000000 0.079566 0.959393
93 0.945283 -0.133704 0.000000 0.104048 0.946547
94 0.958651 -0.133607 0.000000 0.130706 0.932359
95 0.970208 -0.132956 0.000000 0.160183 0.916415
96 0.979910 -0.131634 0.000000 0.193471 0.898070
97 0.987718 -0.129461 0.000000 0.232226 0.876227
98 0.993600 -0.126109 0.000000 0.279518 0.848812
99 0.997535 ~-0.120869 0.000000 0.341902 0.811232
100 0.999507 -0.112063 0.000000 0.433845 0.752433
COMPARISON OF GAMMAS
GAMMA FROM KUTTA CONDITION: -0.00000024
GAMMA FROM CONTOUR INTEGR (TRAIL EDGE): =-0.00000725
GAMMA FROM CONTOUR INTEGR (MIDPOINTS): -0.006000025

GAMA FROM BOX INTEGR (OFF THE CCONTOUR): -C.000l0024
GAMMA FROM PRECISE CONTOUR INTEG (6 PT): -0.00£00C24

Ch = 0.000324 Cl. = -0.000001 CM = (0.000C01

LA SRS SRS EERRER R SRS SR SR ERRRsS RS S

*** BEGIN UNSTEADY FLOW SOLUTION ***x

FAAAAAAE AR AR A A AT A FTAR A A AKX F P A AT AT A AN d N

TIME STEP TK = 0.010000 TK - TKM1 = $.01023¢C

ALPHA(T) = 0.000041 OMEGA(T) = -0.000143

U(T) = 0.00C000 VA(T) = =-0.0C0C3¢

NITR VXW VYW WAKE THET GAM-A
0 1.000C3C 0.000000 0.0100C2 0.00000C -0.24C0€¢7E-0¢
1 0.834730 0.000244 0.C08347 0.00029%2 0.436€%8z~3¢
2 0.827773 0€.000255 0.0C8278 0.000309 (.412227e-(¢
3 0.827452 0.000256 (.008275 0.000309 (.41120%:-0%

CONVERGED SCLUTION OBTAINED AFTER NITR = 3
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J X(J) Q(J) GAMMA Cp (J) v(J) PREV PHI (J) CURR PRI (J)
1 0.999507 -0.107774 0.000004 ©0.432728 -0.753023 0.032660 0.032661
2 0.997535 -0.117297 0.000004 0.341094 -0.811709 0.033045 0.033045
3 0.993600 -0.123077 0.000004 0.279152 -0.849194 0.033663 0.033661
4 0.987718 -0.126843 0.000004 0.232351 -0.876535 0.034408 0.034404
5 0.979910 -0.129345 0.000004 0.194095 -0.898321 0.035211 0.035205
6 0.970208 -0.130932 0.000004 0.161293 -0.916622 0.036018 0.036011
7 0.958651 -0.131801 0.000004 0.132278 ~-0.932531 0.036785 0.036776
8 0.945283 -0.132080 0.000004 0.106051 -0.946691 0.037475 0.037463
9 0.930159 -0.131864 0.000004 0.081967 -0.959514 0.038055 0.0380C41
10 0.913336 -0.131225 0.000004 0.059576 -0.971280 0.038497 0.038482
90 0.894883 -0.132662 0.060004 0.032373 0.982025 0.038778 0.038794
91 0.913336 -0.133893 0.000004 0.054048 0.971077 0.038497 0.038511
92 0.930159 -0.134798 0.000004 0.077163 0.959272 0.038054 0.038067
93 0.945283 -0.135322 0.000004 0.102044 0.946404 0.037474 £.03748¢
94 0.958651 -0.135406 0.000004 0.129134 0.932188 0.036785 0.036794
95 0.970208 -0.134972 0.000004 0.159071 0.916209 0.036018 C.036025
96 0.979910 -0.133914 0.000004 0.192844 0.897820 0.035219 0.03521¢
97 0.987718 -0.132066 0.000004 2.232097 0.875921 0.0344C7 €.034411
98 0.993600 -0.129123 0.000004 0.279879 0.£48433 0.033662 0.C33664
99 0.997535 -0.124414 0.000004 0.342703 0.810760 0.033045 0.033044
100 0.999507 -0.116362 0.000004 0.434960 0.751843 0.03265% 0.032658
COMPARISON OF GAMMAS
GAMMA FROM KUTTA CONDITION: 0.00000411
GAMMA FROM CONTOUR INTEGR (TRAIL EDGE): -0.00000165
GAMMA FROM CONTOUR INTEGR (MIDPOINTS): -0.00000137
GAMMA FROM BOX INTEGR (OFF THE CONTOUR): 0.00000462
GAMMA FROM PRECISE CONTOUR INTEG (6 PT): 0.00000385
Ch = (.000324 CL = 0.005136 CM = -0.003050
TRAILING VORTICES DATA
M X (M) Y (M) CIRC
1 1.004137 0.000001 -0.000009
TIME STEF TK = 0.020000 TK - TKM1 = 0.010CC¢C
ALPHA (T) = 0.0001¢64 OMEGA(T) = -0.000285
U(T) = 0.000G00 V(T) = -0.000071
NITR VXW VYW WAKE THETA GAMMA

0 0.827452 (0.000256 0.008275 0.000309 0.411158E-C5
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CONVERGED SOLUTION OBTAINED AFTER NITR = 0

J X (J) oI GAMMA CP (J) V(J) PREV PHI(J) CURR PHI(J)
1 0.999507 -0.104926 0.000011 0.432928 -0.753413 0.032661 0.032658
2 0.997535 -0.114799 0.000011 0.341275 -0.812045 0.033045 0.033042

20 0.669285 -0.109493 0.000011 -0.121525 -1.061102 0.031441 0.031419
21 0.639427 -0.105975 0.000011 -0.138604 -1.069082 0.029361 0.029339
22 0.609018 ~0.102029 0.000011 -0.155875 -1.077078 0.027013 0.026992
23 0.578179 -0.097571 0.000011 -0.173377 -1.085108 0.024398 0.024378
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C. DIRECTIONS FOR THE EXECUTION OF INCOMPBL.F
1. Steady State Case
A. Execution of Incompbl.f is straight forward. First edit the input files,

FORO0O1.DAT and incompbl.dat, and set the desired flow conditions.

TABLE 6. INCOMPBL.F INPUTS

INPUT COMMENTS _
incompbl.dat IWAKE-Flag Wake Calulation
NXT

NW-No. of point in wake

ITREND-No. of Iterations
ITR(1)-Transition Flag Upper Surface
ITR(2)-Transition Flag Upper Surface
ISWPMX

RL-Reynolds Number
XCTR(1)-Transition Location Upper
Surface

IP-Print flag

FOROO1.DAT Input AOA, pivot point and Airfoil
Coordinates, and No. of Panels

B.) For a unix based machine the code is executed as follows:
incompbl <incompbl.dat> incompbl.out.

TABLE 7. INCOMPBL.F OUPUT

OUTPUT COMMENTS
incompbl.out Flow data

Note: The original Fortran code can be modified to store desired output in
separate data files by inserting a WRITE (24,*) statement inside the required do-loop.
(Example: Cp vs x/c data could be stored in a data file FOR024.DAT). This requires some

knowledge of Fortran Programming.
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a. Sample Input to Incompbl.f
File Named fort.1 of FOR0O0O1.DAT

3
C
C NACA 0012 AIRFOIL
C

ALPI PIVOT

4.000000 0.250000
NLOWER NUPPER

50 50
X/C
1.00000 0.98C00 0.96000 0.94000 0.92000 0.90000
0.88000 0.86000 0.84000 0.82000 0.80000 0.78000
0.76000 0.74000 0.72000 0.70000 0.68000 0.66000
0.64000 0.62000 0.60000 0.58000 0.56000 0.54000
0.52000 0.50000 0.48000 0.46000 0.44000 0.42000
0.40000 0.38000 0.36000 0.34000 0.32000 0.30000
0.28000 0.286000 0.24000 0.22000 C.20000 0.18000
0.16000 0.14000 0.12000 0.10000 0.08000 0.0600C
0.04000 0.02000 0.00000 0.02000 0.04000 0.06000
0.08000 0.100030 0.12000 0.14000 0.16000 0.18C00
0.200C0 0.22000 0.24000 0.26000 0.28000 0.30000
0.32000 0.34000 0.36000 0.38000 0.40000 0.42000
0.44000 0.46000 0.48000 0.50000 0.52000 0.54000
0.56000 0.58000 0.60000 0.62000 0.64000 0.660C0
0.68000 0.70000 0.72000 0.74000 0.76000 0.78000
0.80000 0.82000 0.84000 0.86000 0.88000 0.900C0
0.92000 0.94000 0.96000 0.98000 1.00000
Y/C

-0.00126 -0.00403 -0.00674 -0.00938 -0.01196 -0.01448
-0.01694 -0.01935 -0.02170 -0.02399 -0.02623 -0.C2842
-0.03056 -0.03264 -0.03467 =-0.03664 -0.03856 -0.045042
-0.04222 -0.043%6 -0.04563 -0.04723 -0.04878 -0.050Z6
-0.05165> -0.0:5294 -0.05415 -0.05530 -0.05634 -0.0572¢
-0.05803 -0.05868 -0.05923 -0.05966 -0.059385 -0.060Ce
-0.0599%7 -0.059¢¢6 -0.05921 -0.05838 -0.05737 -0.056C7

-0.05444 -0.05236 -0.049%C -0.04683 -0.04302% -0.03842
-0.03231 -0.02382 0.00000 0.02382 0.03231 0.03842
0.04309 0.04683 0.04990 0.05236 0.05444 0.05607
0.05737 0.05828 0.05911 0.05%66 0.05937 0.0600C¢6
0.05995 0.0595¢ 0.05923 0.058¢68 0.058¢C3 0.057%¢
0.05634 0.0583¢C 0.05415 0.05294 0.051€5 0.C302¢
0.04878 0.04723 0.04563 0.04396 0.04222 0.04042
0.03856 0.03664 0.03457 0.03264 0.03056 0.02842
0.02€23 0.02393 0.02170 0.01935 0.01694 £.C14a°%
0.01196 0.00938 0.00674 0.00403 0.001z¢
File named incompbl.da
IWAKE NXT NW ITREND
0 161 37 40
ITR(1) ITR(2) ISWPMX RL  XCTR(1)
0 0 1 3008000.0 0.103C0
1P
1



C
C
C

b. Sample Output from Incompbl.f

NACA 0012 AIRFOQIL

INPUT DATA FOR INVISCID-FLOW CALCULATIONS

ALPI=
NLOWER=

COORDINATES OF THE BODY

X/C
1.000000
0.8800Cu0
0.760000

. 640000

.520000

.400000

.280000

.160000

.040000

.080000

.200000

.320000

.440000

.560000

. 680000

.800000

. 920000

lojojololeolololoReoloRloRoNo N

Y/C

-0.001260
~-0.016940
-0.030560
-0.042220
-0.051650
-0.058030
-0.059970
-0.054440
-0.032310
.043090
.057370
.059950
.056340
.048780
.038560
.026230
.011960

[sNolololoReReNe]

PANEL
1
2

4.0000

. 980000
.860000
. 740000
. 620000
. 500000
. 380000
.260000
.140000
.020000
.100000
.220000
. 340000
. 460000
. 580000
. 700000
. 820000
. 940000

elooNololololoNoRoloRololoNo o Ne)

-0.004030
-0.019350
-0.032640
-0.043960
-0.052940
-0.058€80
-0.05%660
~0.052360
-0.023820

0.046830
0.058380
0.059660
0.055300
0.047230
0.036640
0.023990
0.009380

XP
0.99000E+00
0.97000E+00

PIVOT= 0.2500
50 NUPPER= 50

OO OO COO0OOOOCOOOOOCOO0O

[eNoNoloNeNoNeNo Ne]

.960000 0.940000 0.920000
.840000 0.820000 0©0.800000
.720000 0.700000 0.680000
.600000 0.580000 0.560000
.480000 0.460000 0.440000
.360000 0.340000 0.320000
.240000 0.220000 0.200000
.120000 0.100000 ©0.080000
.000000 0.020000 0.040000
.120000 0.140000 0.160000
.240000 0.260000 0.280000
.360000 0.380000 0.400000
.480000 0.500000 0.520000
.600000 0.620000 0.640000
.720000 0.740000 0.760000
.840000 0.860000 0.880000
.960000 0.980000 1.000000

.006740 -0.009380 -0.011960
.021700 -0.023990 -0.026230
.034670 -0.036640 -0.038560
.045630 -0.047230 -0.048780
.054150 -0.055300 -0.056340
.059230 -0.059660 ~0.059950
.059110 -0.058380 -0.057370
.049900 -0.046830 -0.043090

.000000 0.023820 0.032310
.049900 0.052360 0.054440
.059110 0.05%660 0.059970
.059230 0.058680 0.058030
.054150 0.052940 0.051650
.045630 0.043960 0.042220
.034670 0.032640 0.030560
.021700 0.019350 0.016940
.006740 0.004030 0.001260
INVISCID FLOW RESULTS
YP Cp
-0.14950E-02 0.25519E+00

-0.44813E~02 0.17805E+00

174

[eNeoNoReoloNolalolololoNoleNeNo N

. 900000
. 780000
.660000
. 540000
.420000
. 300000
.180000
.060000
.060000
.180000
. 300000
.420000
.540000
. 660000
. 780000
. 900000

.014480
.028420
.040420
.050260
.057260
.060060
.056070
.038420
.038420
.056070
.060060
.057260
.050260
.040420
.0284290
.014480



QWX IANU bW

[y

90
91

93
94
95

97
98
99
100

PANEL
101
102
103
104
108
106
107
108
109
110
111
112
113
114
115
11¢
117
118
119

CL =

OCOOOOOCO

[eNoNoNololoNoNoRoNoeNe)

[eNeoNoNololeolololoRolololoNoNoNoRoNoNe]

.95000E+00
. 93000E+00
.91000E+00
.89000E+00
.87000E+00
.85000E+00
.83000E+00
.81000E+00

.79000E+00
.8100CE+00
.83000E+00
.85300E+0O0
.87000E+00
.89C00E+00
.91000E+00Q
.93000E+00
.95000E+00
.97000E+00
. 99000E+00

XP

.10033E+01
.10110E+01
.10209E+01
.10340E+01
.10510E+01
.10732E+01
.11023E+01
.11402E+01
.11897E+01
.12543E+01
.13387E+01
.14489E+01
.15928E+01
.17806E+C1
.2028%E+01
.234€2E+CL
.27€43E+01
.33103E+01
.38072E+01

0.47937E+0C

OO0 OO0OOOOOO

oNoNoloNeolooRoNoNoNololeoRNoNeNe Na e R

.74415E-02
.10321E-01
.13061E-01
.15646E-01
.18113E-01
.20502E-01
.22829E-01
.25104E-01

.2731%E-01
.25096E-01
.22823E-01
.20492E-01
.18084E-01
.15564E-01
.12899E-01
.10105E-01
.72366E-02
.43440E-02
.14480E-02
INVISCID WAKE

YP

.26712E-04
.93657E-04
.19595E-03
.35320E-C3
.59334E-03
.95766E-03
.15069E-02
.23202E-02
.355€5E-02
.53713E-02
.80381E-02
.11926E-01
.17545E-01
.25591E-01
.3€6989E-01
.53013E-01
.75273E-01
.10592E+00
.13479E+Q0C

OO OO OOOO

oNoNoloNololioNololoNololoReololoRe N

.13179E+00
.97803E-01
.74658E-01
.60117E-01
.49465E-01
.39706E-01
.30916E-01
.21877E-01

.12424E+00
.10630E+00
.88121E-01
.69791E-01
.49935E-01
.24583E-01
.93575E-02
.51153E-01
.99432E-01
.15874E+00
.25519E+00

SULTS
Cp

.34783E+0C
.26481E+0QC
.21845E+00
.18376E+00
.15510E+00
.13035E+00
.10857E+00Q
.89285E-01
.72268E-01
.57416E-01
.446€66E-01
.33948E-C1
.25162E-01
.18168E-01
.12767E-01
.87308E-C2
.58084E-02
.37€24E-C2
.26992E-02

INPUT DATA FCR BOUNCARY-LAYER CALCULATIONS

IWAKE

0

ITR(1)

0
IpP
1

NXT
1€1
ITR(2)
0

37 40
ISWpNMKX 10**-6*RL
1 3.00

Nw ITREND

CTR(1)
g.10




sk ok %k gk ok oh ko k ok ok CYCLE

SUMMARY OF THE DRAG,

COEFFICIENTS WITH THE CYCLE

40 AkhkhkAhkkkkkhkdxk

LIFT AND PITCHING MOMENT

CD,CL AND CM ARE EVALUATED FROM THE INTEGRATION OF CP

CYCLE

G W N -

35
36
37
38
39
40

CD
.001978
.003184
.002734
.002422
.002227

oNoReoNoNe/

.001684
.001731
.001684
.001731
.001684
.001731

OOOO0OOOO0O

CL
.001684
.001730
.001684
.001730
.001684

[oNeoNoNe N

.427157
.427790
.427165
.427807
.427167
.427822

OO OCOOO

BOUNDARY IAYER PROPERTIES FOR THE

NX

76
77
78
79

158
159
160
161

UPPER SURFACE -----

= 0.134E+3

XC

.00294
.0014¢
.0005¢
.00018

OO OO
QO OO

.98712
.99209
. 99639
.00000

—OOO
[

.003411
.0065¢€2
.009021
.010828

.018435
.0234e1
.027802
.031453

~
v

XS

[eNeNeoNeo

OOO S

LOWER SURFACE -----

XCTR= 0.677E+C0

NX

87

XC

0.0C547C 0.

XS

00C432 0.

176

cM

0.427162

0.427756

0.427162

0.427770

0.427157

0.004733

0.004494

0.004731

0.004491

0.004731

0.004488

LAST CYCLE

CF oLS UE
06394 0.00005 0.15840
03670 0.00005 0.33362
02384 0.00005 0.48286
101910 0.00005 0.59624
00046 C.00711 0.87987
0G035  0.00749 0.87320
100025 0.00785 ©.86751
00019 0.00818 0.86283

CFr DLS UE
47500 0.0000€ 0.02025

OO OO

OOC OO

(@]

Cp IT

.97401
.88870
.T6€85
.64450

NN W

.22583
.23751
.24742
.25553

[Gx RGN YR U]




88
89
90

158
159
160
161

O OO

P OOO

.00888
.01333
.01841

. 98713
.99210
.99639
.00000

OO0OO

OO

.004971
.010187
.016077

. 992288
.997313
.001654
.005305

[oNeoNe]

OO OO

.15459
.02621
.01498

.00204
.00186
.00171
.00159

O OO

[eNoNoNe]

.00006
.00007
.00007

.00181
.00191
.00202
.00212

177

[oNeNe)

[oNoNeRe]

.18949
.36027
.53294

.89064
.88051
.87121
.86310

OO O

OO OO

.96409
.87021
.71597

.20676
.22471
.24100
. 255058

w NN

RNNN
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